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Abstract—A handover in wireless networks is the mechanism
to maintain quality of service (QoS) by transferring an ongoing
call or data connection from one point of access to another.
IEEE802.11-based wireless local area networks (WLANs) do not
explicitly support handovers, but permit a changeover if two
access points (APs) have identical identifiers. This changeover is
triggered by the mobility of a mobile host or an AP’s inability
to support hosts in its vicinity, and such changeovers are not
seamless. The changeover is initiated by the mobile host which
results in disruptions to ongoing connections. In this paper, we
develop a changeover prediction model as an evidence-based tool
to help minimise such disruptions. We determined the best set
of predictors for a changeover using variable selection on a
linear regression model. Our results show that the best set of
predictors for changeover is consistent and reproducible across
different locations around a campus area network. This finding
can provide significant insights to the design and development of
future handover algorithms built on top of IEEE 802.11 WLAN.

Index Terms—Handover, WLANs, 802.11, SDN.

I. INTRODUCTION

In a wireless network, a handover “is defined as the mech-
anism by which an ongoing connection is transferred” from
one point of access to another point of access [1]. A handover
helps to ensure that users’ existing connections (such as an
ongoing Hangout session) do not break whilst they move out
of range of one point of access into another. However, the
IEEE 802.11 wireless local area networks (WLANs) do not
explicitly support handovers and were not initially designed
to support real time and delay sensitive services.

For an IEEE 802.11-based WLAN, the standard allows for
a mobile host to switch between two access points (APs) if
the APs have identical identifiers. But switching between APs
does not maintain connection continuity leading to disruption
and re-establishment of existing connections. In this paper, we
call this process a changeover and we use this term to precisely
describe the process of a mobile host losing connectivity from
a source AP and re-association with a destination AP. In our
context, the term changeover is different from handover in the
sense that a handover is a process that maintains a connection’s
state during a changeover and this process attempts to hide the
artefact of changeover (e.g. jittery videos, disconnections, etc.)

Among the different proposals for supporting WLAN han-
dovers, network-side handover approach is preferred for cam-
pus area WLANs. Network-side handover support is the
term we coined to describe the operational reality of mak-

ing changes to network-side operation to support handover
between APs. Network-side changes (such as AP firmware
upgrade) are easier to deploy because it usually falls under
a single administrative domain and changes can be made
simultaneously, thus reducing possible incompatibilities.

Fundamental to providing network-side handover support
is anticipating a handover at the AP. This anticipation helps
detect the onset of degraded quality of service (QoS) in the
initial phases and could facilitate the starting of more effective
handover management strategies to improve the QoS during
the handover. The anticipation of a handover can be linked to
some metrics readily available in the AP, for example, received
signal strength indicator (RSSI) and access delay. For the
purpose of handover management, the metrics used to trigger
a handover are called predictors. To anticipate handovers, the
network tracks a set of predictors to aid handover decisions.
However, when too many redundant predictors are present,
collecting, storing and processing this information wastes
bandwidth, energy and storage space.

Identifying a modest number of handover predictors is
useful in practice for several reasons. Firstly, tracking a smaller
set of handover predictors eliminates predictors that may
confuse the handover algorithm thus helping the network to
respond quickly to prevent excessive delays during a handover.
Secondly, WLAN APs are low cost devices that have limited
compute and storage capability. Hence, handover algorithms
are expected to be of modest complexity with a limited set of
predictors as inputs. Thus, it is important that the limited set of
predictors contribute to the predictive accuracy of impending
handovers.

To date, there has been very little research to determine
which are the significant predictors of handover for IEEE
802.11 WLANs. While some information can be gleaned
from other systems such as 3G, LTE, etc., the protocols and
interactions between entities in a IEEE 802.11 WLAN and the
reasoning involved in the handover process are different. This
paper provides new understanding of the critical predictors
in IEEE 802.11 WLAN changeovers (note the use of the
term changeover because our campus WLANs do not support
handover). Better understanding of changeover predictors is
necessary for more informed decisions in devising handover
algorithms. We use multiple regression and variable selection
on empirical changeover datasets to derive the best set of
predictors. In summary, the goals of this paper are to:



(i) determine if a set of predictors can be consistently iden-
tified from changeover datasets with random variability,

(ii) develop a changeover prediction model using optimal
predictors for supporting network-side handover, and

(iii) provide an empirical basis for future handover algorithm
development.

In the following section, we establish the context by expos-
ing the challenges facing network-side handover support and
previous work that closely parallel the ideas to be presented
in this paper. Section III describes the WLAN changeover
datasets and test bed setup used to collect these datasets. The
method we used for constructing the changeover prediction
model from the empirical data is presented in Section IV
followed by the regression diagnostics in Section VI. Finally,
Section VII is where we give our conclusions, discuss future
work and research opportunities.

II. BACKGROUND & RELATED WORK

During a handover, session continuity and minimal disrup-
tion to an ongoing session or flow has always been the primary
goal of handover management. Existing research on handovers
are geared towards supporting 2G, 3G and LTE mobile hosts.
This is because the goals of handover management hand-
over management are more easily supported by some radio
technologies compared to others [2], [3]. As the handover
process is not standardised in the IEEE 802.11 standard,
the adverse impact of switching between APs (for example,
increased delay and decreased throughput) is implementation
specific and may vary across mobile hosts depending on
vendor implementation.

There is research to show that handover decisions based
on link-layer predictors are more responsive and yield better
QoS in terms of latency and perceived quality [4]. A study
performed by Mishra et al. [5] found that the greatest de-
lay when switching APs was the probing delay (during the
scanning phase) which is required for finding an appropriate
AP to switch to. Work has since been conducted to improve
this delay [6] and the IEEE has published additional standards
such as the 802.11k [7] and 802.11r [8] that provide link-
layer information to facilitate future handover mechanisms.
However, IEEE 802.11 semantics permits a mobile host to be
associated with only one AP at any given time and therefore a
changeover between two APs requires a “break-before-make”
mechanism.

In its current form, the changeover in IEEE 802.11 relies
on the RSSI and most of the proposed handover algorithms
in the literature are commonly based on RSSI [6], [9], [10].
For example, changes in RSSI of the currently associated
AP beyond certain thresholds can be used to trigger a hand-
over. Depending on the how the IEEE 802.11 standard is
implemented on a mobile host device, the device may not
switch to another AP until the RSSI is below a threshold (for
example below -90 dBm) where the currently associated AP
is unreachable.

Besides RSSI, the number of frame retransmissions or
frame losses have been widely used as triggers for handover
decisions [9], [11]. A common reasoning is that a change
in RSSI poorly reflects the necessity for a handover. A
study by Tsukamoto et al. [9] found that using RSSI as the
handover trigger was not sufficient in detecting performance
degradation. Using frame retransmissions as a trigger for a
handover allows a reduction in TCP goodput to be detected
and dealt with before the decrease is noticeable to a user.

For ensuring delay constraints, there have been several
studies on access delay to guide handover decisions [12], [13].
The performance of real-time (or near real-time) services such
as video streaming and voice over Internet Protocol (VoIP)
will be impacted if time related predictors such as access
delay, round-trip-time (RTT) and jitter are neglected. Such
time related predictors are increasingly important as the shift
to an all-IP solution takes place and handovers will need to
occur between different technologies, such as 4G LTE and
WLAN, which could lead to increased delays [12].

Despite several link-layer predictors proposed in the lit-
erature for improving handover delay and throughput, there
is little understanding of the relative trade–offs in handover
performance when one predictor is selected over another. The
bulk of current research focuses on using RSSI to trigger a
handover, this is based on intuition and common sense rather
than empirical measurements/data. Besides RSSI, there are
many predictors at the disposal of the handover management
algorithm which could be equally valid predictors for a hand-
over. For example, studies have been done using predictors
such as frame transmissions and frame losses [9], [11] but
other predictors such as data rates and transmission rates have
not been considered together with the usual RSSI.

Motivated by the lack of evidenced-backed analysis of
the predictors of handovers, we use multiple regression to
analyse a set of predictors which may explain changeover
occurrence in WLANs. The use of regression models for
studying handover in wireless networks has been documented
in several papers. For example, the authors in [10], [14]–
[16] characterised mobility patterns to anticipate handovers
with the help of regression modelling. The key differences in
these models are the handover criteria and performance. Signal
strength remains as a notable criteria in most of the models
for predicting handover and it is used in tandem with one or
more criteria for determining handovers. Surprisingly, there
has been no comparative study of which criteria are best or
even which set of criteria optimally predicts a handover. In
the following section, we describe the approach we used to
study the different predictors tracked by the network that may
be used by handover algorithms.

III. APPROACH

An experimental approach is adopted involving a test bed
built with the goal of collecting changeover data. The test
bed and measurement campaign were replicated in three
separate locations that represent a campus area WLAN. In each
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location, mobile hosts are tracked via their MAC addresses and
we assume that each MAC address matches only one user.

Detailed data were collected on the APs when mobile hosts
changeover between two adjacent APs and each AP records
the results in a text file on the AP’s internal flash memory.
The collected data is cleaned, processed for outliers and finally
used to construct a regression model for identifying the most
useful predictors of a changeover.

A. Campus area locations

We performed our experiments in three indoors scenarios
and one outdoor scenario. The indoor scenarios are three dif-
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ferent locations in Victoria University of Wellington’s Kelburn
campus, New Zealand. The floor plans and the measurement
points for these locations are shown in Fig. 1 to Fig. 3.
This indoor environment reflects the noise and interference
associated with human movement patterns and other APs
within range that are potentially operating on the same or
overlapping channels. The fourth scenario (Fig. 4) is an
outdoor setting in Lower Hutt, Wellington, New Zealand, with
minimal interference due to few people and minimal WLAN
pollution in the vicinity to act as a baseline reference.

Fig. 1 is a typical interior environment with small offices
and cubicles (recorded as dataset D1), while Fig. 2 shows
a large open indoor student space, roughly cube shaped
with twelve large beams cutting across the space (recorded
as dataset D2). Another representative campus scenario is
a long hallway with laboratories on one side and this is
shown in Fig.3 (recorded as dataset D3). Finally, Fig. 4
depicts the open space outdoors scenario located in Lower
Hutt (41◦11′37.4′′S, 174◦55′53.6′′E) and the measurements
were recorded as dataset D4. The dash line in each figure
is the typical path traversed by mobile hosts (users) and the
changeover occurs when the mobile host moves between the
coverage area of two APs (this coverage area is depicted as
concentric circles centred on the AP).

B. Devices & Device Configuration

The test bed equipment (APs) are identical in order to
achieve homogeneity and reduce systematic bias that could
be due to differences in changeover handling. The APs were
of the same model and make (Linksys WRT1900ac) running
OpenWrt 15.05 on Linux. Each AP has four detachable



Predictor Notation (unit) Description Source Documented use

RSSIs V1 (dBm) Denotes the RSSI of WLAN signal from originating AP.
Denotes the RSSI of WLAN signal from destination AP.
The RSSI is measured at the physical layer and indicates the power observed at the
antennas used to receive the incoming frames. Note that the RSSI is only measured
during the reception of the physical layer convergence protocol (PLCP) preamble.

iwinfo
[6], [9], [10]

RSSId V2 (dBm) [6], [9], [10]

Noise Floor V3 (dBm) Sum of all noise present in the channel from the perspective of the source AP. iwinfo

SNR V4 (dB) The received signal to noise ratio is the relative strength of the desired signal to the
noise plus interference power over the channel. Different from the RSSI, the desired
signal strength is measured over the received frame rather than the PLCP preamble.

iwinfo

TX Rate V5 (Mbps) Physical layer data rate which the source AP is sending to a logged host. iwinfo [6]

TX Bytes V6 (Bytes) The number of bytes transmitted to a host since the last sample taken.
Obtained by keeping track of historical data from proc. proc [6]

TX Packets V7 (Integer) The number of packets transmitted to a host since the last sample taken.
Obtained by keeping track of historical data from proc. proc [6]

RX Rate V8 (Mbps) Physical layer data rate which the source AP is receiving from a logged host. iwinfo [6]

RX Bytes V9 (Bytes) The number of bytes received from a host since the last sample taken.
Obtained by keeping track of historical data from proc. proc [6]

RX Packets V10 (Integer) The number of packets received from a host since the last sample taken.
Obtained by keeping track of historical data from proc. proc [6]

No. Clients V11 (Integer) The number of clients associated to the source AP. iwinfo

RTT V12 (ms) Round trip time of an ICMP message to a monitored host. ping

TABLE I
DESCRIPTION OF PREDICTORS (EXPLANATORY VARIABLE) AND HOW EACH PREDICTOR IS MEASURED.

antennas and operate in 2.4 GHz band (Channel 1) using
the IEEE 802.11b protocol with a maximum data rate set to
11 Mbps (at the physical layer). The default rate adaptation for
the AP was retained [17] (the AP uses the Marvell 88W8864
Chipset).

Before setting up the test bed to run the experiments, a site
survey at each of the four chosen locations were conducted.
This was done to determine a common transmit power that
would be appropriate for the space available and to determine
suitable AP placement. Based on the site survey, a changeover
between APs is likely occur with the APs set to transmit at
15 dBm.

C. Measurement

A measurement campaign was conducted in
August/September 2015 to collect data from APs the
moment a mobile host switches from one AP to another.
Table I lists the twelve predictors (explanatory variables)
along with the respective symbols used to denote each
measured predictor. From this point forward, we use the term
variable and predictor interchangeably. The description of
each predictor is also given to avoid ambiguity and the tool
used to retrieve the data is listed in the “Source” column.
The final column cites the documented use of the predictor
in the literature.

A shell script was written to automate measurement and
data collection. The shell script executes the iwinfo, ping and
proc commands on the APs and returns the readings of all of
the observed predictors for each second passed. If no packets
have been transmitted by the observed mobile host on the
wireless interface (inactive clients), the data would not get

recorded. Only when there was activity on the interface from
the observed mobile hosts would data get logged. All APs are
monitored to ensure that they are in operational state during
the data collection period.

D. Dataset processing

The first step in processing the datasets was to apply data
cleaning procedures to the raw data set. The datasets were
checked for duplicate entries, and entries with “NAN” (not
a number), “unknown” and entries with missing values; if
found the entries were removed. The second step was detecting
outliers and extreme values. For outlier detection, we employ
Minimum Covariance Determinant which calculates the N -
dimensional (where N is the number of predictors) distance
of a point from the centroid of the dataset and discards points
that are far away from the centroid.

Additionally, we also perform changeover continuity check-
ing whereby we check that data g is successfully received
at the new AP (and only the new AP) when a mobile host
moves from one AP (source) to the other AP (destination).
This process eliminates the so-called “ping-pong” effect of
repeatedly changing the association with two APs.

Upon cleaning the dataset and performing outlier detec-
tion the average changeover rate for each dataset is 25.2%,
22.1%, 21.3% and 25.0%. This is the ratio of the number of
changeovers to the average number of mobile hosts associated
with the source AP. Exclusion of entries with missing data
resulted in a final sample size of 36205 for the subsequent
multivariate analyses. All datasets used in this paper would be
made publicly available through the CROWDAD project [18].



IV. REGRESSION MODELLING

A multiple linear regression model links the statistical
dependence of a variable under study Y on a set of N
explanatory variables {V1, V2 . . . VN} and random error ε
called the residual. In our problem of changeover prediction,
the variable Y denotes the changeover rate in a two-minute
interval and the predictors are the explanatory variables. The
two-minute changeover rate is defined as the ratio of the
number of changeovers to the number of associated mobile
hosts before the end of the two minute observation interval.
The choice of two minutes is guided by the frequency a
handover algorithm re-calculates the changeover probabilities;
this aspect provides an opportunity for further research to
determine more appropriate observation durations to suit dif-
ferent scenarios and overheads incurred from more frequent
re-computations.

In the regression model, we assume a linear relationship
between Y and {V1, V2 . . . VN} in the form of

Y ∼ f (V1, V2 . . . VN ) + ε, (1)

and the residuals ε are assumed to be normally distributed with
a constant variance. Using the regression model in Eqn. (1),
we employ variable selection procedures to choose the subset
of explanatory variables that minimises the residual (hence
bringing f (V1, V2 . . . VN ) closer to Y ). A chosen subset of
explanatory variables is called a submodel while the full model
contains all explanatory variables.

We employ four different model selection strategies to arrive
at the best subset of predictors. These strategies are: (i) forward
selection (FS), (ii) backward reduction (BR), (iii) stepwise
regression (SR) and (iv) exhaustive subsets (ES). Of these four
strategies, FS, BR, and SR are automated variable selection
strategies while ES performs model selection over all combi-
nations of predictors. Upon completing the variable selection,
we will revisit the assumptions for the regression and check
if they are violated with the help of regression diagnostics.

A. Changeover predictors

Candidate predictors were selected based on the following
criteria: (i) well defined at the link layer or network layer,
(ii) is measurable using existing network-side infrastructure
and (iii) has been documented to be associated with handovers
in the literature. These predictors are classified into the fol-
lowing categories: (i) signal strength, (ii) data rates, (iii) delay
and (iv) associations (number of clients attached).

As a sanity check, a univariate logistic regression predicting
changeover was performed to determine the statistical sig-
nificance of the association between each predictor and the
changeover rate. In univariate regression, a function relating
the statistical relationship between one predictor and the
changeover rate is analysed ignoring other predictors. The
odds ratio and statistical significance (P -values) resulting from
the univariate regression are tabulated in Table II, where D1
– D4 refer to the datasets for the four scenarios shown earlier
in Fig. 1 to Fig. 4 respectively.

Category Predictor Odds ratio P -value
D1 D2 D3 D4

Signal
strength

RSSIs 1.461 1.239 1.478 1.865 < 0.0001
RSSId 1.461 1.239 1.478 1.682 < 0.0001
Noise Floor 1.175 1.192 1.2099 1.683 < 0.0005
SNR 1.587 1.490 1.358 1.078 < 0.0001

Data rates

TX Rate 1.278 1.187 1.2531 1.012 < 0.0005
TX Bytes 1.198 1.239 1.2408 1.234 < 0.0005
TX Packets 1.244 1.216 1.189 1.231 < 0.0005
RX Rate 1.419 1.424 1.399 1.203 < 0.0005
RX Bytes 1.422 1.408 1.415 1.402 < 0.0005
RX Packets 1.401 1.413 1.39 1.433 < 0.0005

Associations No. Clients 0.567 0.627 0.464 0.270 < 0.001

Delay RTT 1.327 1.283 1.313 1.565 < 0.0001

TABLE II
UNIVARIATE ASSOCIATION BETWEEN HANDOVER AND PREDICTOR.

The odds ratio quantifies how strongly the presence or
absence of a predictor is associated with the two-minute
changeover rate in the dataset. In our datasets, the odds
ratio is defined as the change in likelihood of changeover
for every unit increase in the predictor. An odds ratio of
1 indicates that a predictor does not influence the odds of
changeover likelihood. An odds ratio greater than 1 implies
the corresponding predictor is more useful in anticipating
changeover while an odds ratio less than 1 implies otherwise.
Similarly, a predictor with a low P -value is likely to be a
meaningful addition to predicting the changeover.

From the univariate regression, the number of clients stands
out as having very little predictive power for changeovers
because the odds ratio is lower than 1, while RSSI appears
to be strongly associated with the changeover. Recall that
univariate regression provides an isolated view of the role of
one predictor from all of the other predictors and the marginal
effects of multiple regression in Eqn. (1) may be entirely
different from the univariate regression.

B. Variable Selection

For regression models with high dimensionality (i.e. N
in Eqn. (1) is large), a global solution to the problem
of variable selection requires an exhaustive search over all
possible subsets of the explanatory variables. This approach
is computationally expensive and therefore in practice, an
incremental approach is preferred. The result of the variable
selection procedure is the submodel whose fitted values best
reflect the changeover rate.

Widely used incremental approaches are FS, SR and BR.
Each of these procedures generate a sequence of submodels
in which each submodel differs from the previous one in the
sequence by the addition or deletion of a single predictor. The
variable selection procedure is terminated when the F -value
of each predictor in the model is significant. The F -value is
the test of significance of the predictor if it were included in
the regression model and can be thought of as a test of quality
of the predictor.



Besides the F -value, the significance of a predictor included
in a model selection procedure can be measured using the
Akaike’s Information Criterion (AIC). The AIC can be inter-
preted as a measure of quality of the regression model by
calculating how much “information” is lost with respect to
an optimal model. Another model selection criterion similar
to AIC is the Bayesian Information Criterion (BIC). The
difference is that BIC penalises the inclusion of predictors
and the size of datasets (i.e. rewarding fewer variables to avoid
overfitting).

1) Automated Variable Selection: In FS, predictors are
added one at a time according to some selection criterion.
Backward reduction is performed under a similar set of rules,
beginning with the full model and sequentially eliminating one
predictor at a time. Both FS and BR have the characteristic
that once a predictor enters (departs) the model, it is not subse-
quently reconsidered for removal (reentry). The SR procedure
begins like FS but with the added flexibility of removing a
previously added predictor if it fails to retain its significance
as additional predictors are added. The potential problems in
overlooking better models are well known and we take note
of the caution on the misguided use of automatic variable
selection procedures [19].

2) Exhaustive subset (ES): ES is a selection procedure
where all possible predictor subset combinations are examined
to get the best set of predictors. For this set of 12 predictors,
the ES selection was performed and, it retained three predictors
as the optimal combination across all datasets.

V. RESULTS

The results for the most significant predictors for
changeover for the four datasets are shown in Table III. We
use both AIC and BIC criteria for each variable selection
procedure, and Table III shows the best set of predictor
variables based on these two criteria. A tick in the AIC column
indicates that the best model through the given procedure
was found based on the AIC criterion, and likewise for the
BIC column. Ticks in both AIC and BIC denote that the
procedure returns the same submodel tuned via both AIC and
BIC criteria.

The variable-selection procedure identifies the predictors
that fit the two-minute changeover rate best and drops pre-
dictors that do not contribute to explaining the observed
changeover rate. In all three datasets it was consistently found
that {SNR, RX Bytes and RTT} were the most significant
predictors for changeover. The initial hypothesis (from Ta-
ble II) that the number of associated clients is not a significant
predictor is confirmed by the findings reported in Table III
because it is dropped as a predictor by all four variable
selection procedure. By consensus, the best submodel for
predicting changeover based on indoor datasets (D1–D3) is:

Y ∼ V4 + V8 + V12,

Y ∼ SNR + RX Bytes + RTT. (2)

The choice of SNR over RSSI in the best submodel given in
Eqn. (2) is expected. This choice can be traced to the fact that
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Fig. 5. Non-linear relationship between the number of received packets and
total bytes received, averaged over a 2–minute interval.

RSSI measures the power within a given channel and does not
differentiate between signal and interference power while SNR
measures the desired signal to the noise floor. For the outdoor
scenario, the variable selection procedures FS and BR retained
the RSSIs predictor in favour of the SNR predictor. Recall also
that the D4 dataset was obtained under conditions whereby the
signal between APs and mobile hosts have a dominant line of
sight and experience less reflection, and these explain why the
RSSI predictors provide a closer approximation of changeover
rate. This is because the FS and BR procedures do not remove
a predictor once it is included.

An interesting observation from the results in Table III is
that one predictor from each category (signal strength, data
rate and delay) is chosen by each selection procedure. This
is intuitive because each predictor gives a different dimension
to the submodel for predicting the changeover rate. However,
the choice of RX Bytes over both RX Packets and RX Rate
requires further reasoning. All three predictors capture the
same information albeit at different levels. The RX Bytes
predictor was selected over RX Packets because the latter is
coarse grained and hence less responsive to the changes in
changeover. On the other hand, RX Bytes is more responsive
because it counts all bytes from the mobile host inclusive
MAC–layer frames and possibly frames with errors. While the
RX Bytes and RX packet predictors are correlated they are not
linear as seen in Fig. 5. This continuous feedback reduces the
residual error in the regression model and is therefore retained
in all four variable selection procedure.

VI. DIAGNOSTICS

After selecting the most suitable set of predictor variables,
several diagnostics can be applied for assessing the adequacy
of the submodel. These diagnostics are used to assess the
violations of linear regression assumptions and relevance of
the chosen submodel. For example quantile-quantile (QQ)
plots, residual plots, outlier identification (Cooks distance),
or partial residual plots to identify trends in the data. In this
section, we use three diagnostics to check for normality and
homogeneity.

We plot the QQ-plots of the predicted changeover compar-
ing quantiles obtained through the model Y ∼ V4 + V8 + V12
against the quantiles from the ensemble dataset (merging D1,



Dataset Method Predictors Tuning
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 AIC BIC

D1

FS 3 3 3 3
BR 3 3 3 3
SR 3 3 3 3 3
ES 3 3 3 3 3

D2

FS 3 3 3 3
BR 3 3 3 3
SR 3 3 3 3 3
ES 3 3 3 3 3

D3

FS 3 3 3 3
BR 3 3 3 3 3
SR 3 3 3 3 3
ES 3 3 3 3

D4

FS 3 3 3 3
BR 3 3 3 3
SR 3 3 3 3 3
ES 3 3 3 3 3

Selected Regression Model

Y ∼ V4 + V8 + V12

TABLE III
VARIABLE SELECTION USING FORWARD SELECTION (FS), BACKWARD REDUCTION (BR), STEPWISE REGRESSION (SR) AND EXHAUSTIVE SEARCH (ES)

RESULTS.
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D2 and D3). A linear trend in the QQ-plot (Fig. 6) indicates
that the selected submodel produces changeover predictions of
“similar distribution” to the ensemble dataset. Slight deviations
from the reference line (grey dotted line) at the upper and
lower quantiles indicate that the changeover projections may
differ slightly in extreme cases. The lower quartile deviations
occur at entries 56 and 105 in the dataset, while the upper
quartile deviation is due to entry 127. We will see these entries
appear in subsequent diagnostic plots.

Fig. 7a shows the residuals (see ε in Eqn. (1)) versus
predictions (both x-axis and y-axis have the same units)
and the mean (red line). Standardised residuals are residuals
divided by the standard deviation of the residuals and is
useful for comparing across datasets with different means. The
residuals are balanced with respect to the mean and no unusual
variance across the predicted values. Additionally, no trend is
observed in the residuals for plot in Fig. 7a and this obser-
vation suggests that: (i) the residuals are uncorrelated to the
fitted values (normally distributed errors), (ii) the residuals are
uniformly distributed and spread across the predicted values

and (iii) there is no violation of homogeneity assumption.
The residuals versus leverage plot in Fig. 7b indicates points

that have overly strong influence on the regression relationship.
Leverage is a measure of influence an entry (in the dataset)
has on determining the two-minute changeover. Again, three
labelled points ({105, 457, 576}) were identified as entries that
may warrant further investigation. However, the residuals are
balanced with respect to the mean and the identified outliers
are few not significant (large residual that correspond to a
small leverage). The lack of significant outliers can be traced
back to the cleaning of datasets and the use of outlier detection
prior to model selection.

The final diagnostic is the plot of scale versus location
shown in Fig. 7c, the plot indicates that the constant variance
assumption is not satisfied. The plot indicates that the variance
of the model first increases and subsequently decreases over
the range of predicted values. This non-constant variance
is called heteroscedasticity. This suggests that handover al-
gorithms should pay attention to the non-constant variance
when using these predictors for a handover, perhaps scaling
the variables or transforming the variables as a function of
variance would improve the predictive performance of such
algorithms.

VII. CONCLUSION

In this paper, we used variable selection based on linear
regression to determine the best changeover predictors from
a set of commonly used predictors. The results of this model
showed that RSSI was not the best predictor for a changeover
as we had originally thought. In an outdoor environment, RSSI
was still a good predictor for when a changeover occurs, but
was not optimal. We found that SNR, RTT and RX Bytes were
the best predictors for a changeover across the four datasets.
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Fig. 7. Normality diagnostics: (a) Residual vs. Fitted , (b) Residual vs.
Leverage and (c) Scale vs. Location

For future work, handover algorithms can be designed to take
advantage of the results of our analysis on changeover. We
envisage that these new algorithms are easily implemented in
software-defined networks to enable network-side handovers
to take place in order to meet the QoS and user experience
requirements that mobile users expect.
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