
Leveraging Localisation Techniques for In-Network

Duplicate Event Data Detection and Filtering

Jakob Pfender and Winston K.G. Seah

School of Engineering and Computer Science

Victoria University of Wellington, Wellington 6140, New Zealand

Email: { jakob.pfender, winston.seah }@ecs.vuw.ac.nz

Abstract—Event detection has become a ubiquitous application
in the domain of wireless sensor networks. In any distributed
event detection system, duplicate event data that can increase the
likelihood of network congestion is a primary concern, and in-
network data aggregation is a popular approach to alleviate this
problem; similarly, duplicate data can be discarded. We propose
a novel approach that utilises localisation techniques to quickly
identify and discard duplicates among event reports. Using just
the locations of nodes reporting events, the proposed classifier is
able to make a decision on which event reports are to be discarded
as duplicates. We show that our approach has the potential to
greatly reduce packet load in a network and thus save energy
and increase sensor life.

I. INTRODUCTION

Consider a simple wireless sensor network (WSN) used

for distributed event detection. Assume that we want to use

the network to quickly determine the general locations of

ubiquitous and frequently occurring events, such as hotspots

in an area prone to forest fires. Detailed information about

detected events, such as precise sensor readings or the size of

the affected area, is irrelevant; we simply want to know where

and when events have occurred and to be able to distinguish

between them. However, if events happen to occur in close

proximity to one another at the same time, the network does

not necessarily need to distinguish between them, since it is

sufficient to know that an event has been reported in this

general area at this point in time, even if that event may in

reality be two or more closely neighbouring events.

Upon sensing an event, a node sends an event notification

to a fixed sink node using a given routing algorithm. The

event notification contains only the location of the sensing

node and time of occurrence as recorded by the sensing node.

Other information about the event may be sent but is only

relevant to the application at the sink or beyond. Assuming

that events are ubiquitous and are typically detected by several

nodes at roughly the same time, it is reasonable to assume that

at any given point in time, there is a large number of event

notifications en route within the network. However, since many

of these notifications concern the same events, the network is

more congested than it needs to be, since we only require one

notification for each distinct event to be received at the sink.

Thus, the challenge is to quickly and reliably identify which

of these event notifications reference the same event and can

therefore be discarded. We propose a novel way of classifying

event notifications using only the sensing nodes’ locations

as inputs. The classifier proposed in this paper is primarily

based on the concepts of trilateration and multilateration,

i.e. estimating a location by using distance measurements to

three or more known locations. Trilateration derives a location

estimate by finding the intersection of three circles whose

centres correspond to the known locations and whose radii

correspond to the measured distance to these locations. Fig. 1

shows an example scenario. If a node with unknown position

has distance measurements from nodes a, b, and c, whose

positions are known to us, we can draw circles corresponding

to the measured distances around their locations and compute

the intersection between those circles. The measuring node’s

position will then be somewhere in the grey area. More

advanced methods using more than three known locations

in order to reduce the size of the intersection and generally

produce more reliable results are known as multilateration;

these are mainly based on maximum likelihood estimation and

regression analysis methods [6], [13], [16].

Considerable amounts of research have been conducted in

order to refine and improve upon the simple trilateration in

a

b

c

Fig. 1. Example of location estimation by trilateration

d

e

f

Fig. 2. An unsuccessful trilateration attempt

g h

i

j

Fig. 3. Removing outliers (e.g. j) can improve results



hopes of achieving better and more accurate location esti-

mates [5]. As we will show in this paper, it is possible to

apply the basic aspects of multilateration to event reports in

order to identify duplicate reports.

The rest of this paper is organised as follows. We first

describe the basic concept behind our classifier in Section II-A.

We then show that our proposed approach is sound and that it

achieves good accuracy and precision in its classification re-

sults (Section III). Following which, we evaluate our approach

by comparing it to other distributed event detection techniques

both in terms of complexity of the approach and quality of

the results (Section IV). Lastly, we discuss the benefits and

drawbacks of the proposed approach, and provide suggestions

on further refinement and improvement.

II. THE CLASSIFIER

A. Basic idea

Our basic assumption regarding event notifications is that

only the location of a sensing node is known. Using only this

information and our knowledge of localisation techniques, we

can design a simple classifier capable of making predictions

as to whether a list of event notifications all refer to the same

event. Note that this is not classification in the strict mathe-

matical sense because we are not directly sorting observations

into a priori categories; however, in Section III we evaluate the

performance of our solution using methods commonly used to

validate classifiers, which is why we use the term here.

To design the classifier, we make use of the fact that our

sensing nodes have a known sensing distance, i.e. a maximum

range within which they can sense events. If at any point in the

network, a node holds three or more event notifications from

different nodes in its packet buffer, it can simply perform a

tri- or multilateration using the location information given in

the notifications along with the known sensing range as inputs.

This will give an estimate of the event location. This estimate

can then be checked against the sensing range of each node

that sent a notification.

If the location estimate is within sensing range of all

reporting nodes (i.e. there exists an intersection between the

sensing ranges of all nodes), as in the scenario shown in

Fig. 1, we can assume that the event reports probably refer

to the same event, in which case we can simply forward

one of the reports as a representative and delete the rest as

duplicates. Section II-B will discuss in more detail whether

this assumption is justified.

On the other hand, if the estimated event location is outside

the sensing range of one or more of the nodes, this means that

the nodes cannot all be referring to the same event, since it is

impossible (assuming the location estimate is sufficiently ac-

curate) that they are all in range to sense it. Fig. 2 shows such

a scenario: If nodes d, e, and f all register an event at roughly

the same time, it is unlikely that they are referring to the same

event, since the trilateration using their positions and sensing

ranges would not be able to produce an intersection between

all three circles. A sophisticated localisation algorithm might

produce a location estimate somewhere between nodes e and

Algorithm 1 The classifier (called when attempting to clear

the buffer)

1: function CLASSIFY(buffer)

2: while buffer.length ≥ 3 do

3: estimate ← multilateration(buffer)

4: if is valid(estimate) then

5: forward(buffer.front)

6: buffer ← ∅
7: else

8: identify furthest outlier

9: forward(outlier)

10: buffer ← buffer \ outlier

11: end if

12: end while

13: for all packet ∈ buffer do

14: forward(packet)

15: end for

16: buffer ← ∅
17: end function

f ; however, this estimate would lie outside the sensing range

of at least one of the nodes and would thus not be valid.

Since it is impossible to tell which of the reporting nodes are

referring to the same event given this information, we make

no decision and simply forward all three event reports.

If we have event reports from more than three nodes, there

is an additional step we can take to try and filter some of the

reports: If the initial multilateration attempt is unsuccessful

(i.e. the reports are not all referencing the same event), we

can identify the furthest outlier among reporting nodes, i.e. the

node whose position is furthest from the others. We forward

that node’s report and then repeat the multilateration with the

remaining nodes. This is beneficial in scenarios such as the

one shown in Fig. 3, where report j is a clear outlier referring

to a different event than the rest of the nodes. If we forward

j’s event report, the subsequent trilateration on g, h, and i will

succeed and we can treat them as duplicates.

B. Classifier Details

Whenever a node senses an event, it dispatches an event

notification packet containing its own location to the network.

Depending on the underlying routing algorithm, this packet

might be duplicated multiple times on its way to the sink by all

nodes receiving it. This is where the classifier comes into play.

Instead of blindly forwarding all received event reports, nodes

will first store all received reports in a buffer. Nodes will then

periodically attempt to clear their buffer using Algorithm 1.

If there are two or fewer reports waiting in the buffer,

they will simply be sent out, since there is no way to

discern whether they refer to the same event using trilateration

and since two extra packets will not impact the network’s

congestion status in a significant manner. If there are three

or more reports in the buffer, the classifier is invoked using

all reports sent within a few seconds of one another as inputs.

As described above, the classifier initially assumes all such



●

●

●

0.00

0.25

0.50

0.75

1.00

3 4 5

Number of event sources

A
cc

u
ra

cy

Sensing range 30 40 50

(a) Accuracy

●

●

●

●

0.00

0.25

0.50

0.75

1.00

3 4 5

Number of event sources
P

re
ci

si
o
n

Sensing range 30 40 50

(b) Precision

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

3 4 5

Number of event sources

S
p
ec

if
ic

it
y

Sensing range 30 40 50

(c) Specificity

Fig. 4. Accuracy, precision, and specificity (an ideal perfect classifier would achieve 1.0 in all three aspects)

reports are referring to the same event and attempts to compute

a location estimate for this event based on the reporting nodes’

locations. This location estimate is then checked against the

reporting nodes’ locations and sensing ranges.

If the location estimate is not within sensing range of all

node locations in the report buffer, we start removing outliers

among the node locations one by one. We compute the mean of

all report locations in the buffer and select the report whose

location is furthest from this mean. We forward this event

report and remove it from the buffer. We then repeat the

invocation of the classifier on the rest of the buffer until the

trilateration reports a valid result — i.e. all reports refer to the

same event — or the buffer contains fewer than three reports.

Recall that we stated in Section II-A that if the locations of

all reporting nodes are within sensing distance of the estimated

event location, we assume that they are all referring to the

same event. It is of course possible for two distinct events

to occur at roughly the same time in close proximity to one

another, so that both events are registered by the same set of

nodes; this would lead to the classifier treating event reports

generated by either event to refer to the same event. However,

as we stated in Section I, it is not important for our scenario to

distinguish between events occurring right next to one another

at the same time, since one report on the fact that there was

an event at a particular location is sufficient. Therefore, this

apparent oversight by the classifier is within reason and helps

to further reduce congestion by suppressing reports on closely

neighbouring events that do not provide relevant additional

information.

Since it is possible for event reports to be duplicated and

sent on different paths on their way to the sink, the classifier

might be invoked on a set of event reports that are identical

(i.e., they were sent by the same node at the same time).

Intuitively, one might consider introducing a preliminary check

here in order to filter out such duplicates. However, we argue

that this would not result in increased performance since

it makes no difference whether the reports are compared

before or during the classifier invocation; if we simply run

the classifier on all reports as described above, it will filter

identical reports implicitly.

III. VALIDATION

We implemented our algorithm using Castalia [4], an open

source WSN simulation framework for OMNeT++ [1].

Fig. 4 shows the classifier’s accuracy, precision, and speci-

ficity [3], [10] when determining whether a given set of event

reports are identical. We can see that the classifier is generally

good at identifying duplicate event reports, but has a tendency

to be overzealous and produce false positives. However, since

our algorithm greatly reduces congestion by minimising the

number of event reports sent through the network, we can

achieve a positive trade-off between event reports dropped due

to congestion and those dropped due to false classification.

We will show that this trade-off is beneficial in a future

publication, along with more in-depth simulation results such

as the effect of the classifier on overall network lifetime.

IV. RELATED WORK

The ideas discussed in this paper fall in the intersection of

two research areas: distributed event detection and in-network

data aggregation. We will give a brief overview of relevant

contributions to these areas and place our work in context.

In general, the approaches discussed in this section are more

complex and less generalisable than our proposed approach,

although they can achieve higher accuracy in their specific

application domains.

A. Data aggregation

Fasolo et al. [9] provide a comprehensive overview of

extant data aggregation techniques as well as an excellent

taxonomy for classifying the different approaches taken within

this research area. In the ten years since their survey was

published, several promising new approaches have been de-

veloped, but their taxonomy is still well suited to catalogue

them. In the terms used by Fasolo et al., we can classify



our approach as an in-network aggregation with size reduction

that uses periodic simple aggregation, is duplicate insensitive,

and relies on a multi-path approach. However, our approach

simplifies some of the aspects Fasolo et al. consider necessary

for data aggregation. In particular, we do not rely on data-

centric routing, as the aggregation function is agnostic of

the underlying routing mechanism, and we have no need for

time synchronisation, as data is simply aggregated based on

periodic buffer flushes at each individual node.

Most extant data aggregation protocols are structured, i.e.

they rely on some form of in-network hierarchy, such as

clusters or trees, in order to perform their aggregation. Among

structured protocols, LEACH [11] is among the best-known.

It is based on clustering where data are aggregated at specific

points in the network known as cluster-heads, which then

forward the aggregated data to the sink. This requires a setup

phase before the actual event detection can begin, as well as

some overhead during operation to ensure that the clusters stay

consistent with the underlying topology.

In order to avoid the overhead inherent in structured algo-

rithms, several unstructured approaches have been proposed.

Among the first of these works was DAA+RW [8], which

leverages MAC- and application-layer protocols in order to

ensure spatio-temporal correlation of data and thus enables

structure-free aggregation. Among structured approaches, the

one closest to ours is Nath et al.’s Synopsis Diffusion [15],

which is also a duplicate insensitive multi-path approach.

However, the actual aggregation function is more complex

than ours, requiring an overlay network in order to generate

synopses.

B. Distributed event detection

The main focus of research in distributed event detection is

on how a decision is made by a node or a set of nodes as to

whether a set of measurements constitutes an event; however,

there is significant overlap with data aggregation research,

since most event detection schemes rely on some kind of data

aggregation when making decisions and/or when forwarding

event reports to the sink.

Krishnamachari and Iyengar [12] were among the first to

propose a distributed solution to the event detection problem;

they utilised Bayesian algorithms for event region detection.

Luo et al. [14] expand on this approach while improving its

effectiveness and efficiency.

Antonopoulos et al. [2] provide a comprehensive and up-to-

date survey of current event detection approaches along with

a taxonomy of techniques. According to them, most current

approaches can be categorised as pattern matching, model

based, or AI and machine learning based approaches.

Dziengel, Wittenburg, et al. [7], [17] propose a domain-

specific pattern matching approach with tested deployments

in fence surveillance and structural health monitoring. Their

approach is highly effective at identifying events and fusing

data, but the implementation is inherently application-specific,

since it relies on extensive a priori classifier training using

known event data.

V. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach to the problem of

classifying event reports from a distributed event detection

system by exploiting localisation techniques. The proposed

classifier is much simpler than most extant data aggregation

techniques and is effective at reducing packet load within a

network; however, the quality of the classification results has

room for further improvement.

With further refinements, it should be possible to achieve a

level of quality in the results that, coupled with the energy

savings and the fact that the approach is not application-

specific, provides a strong incentive for using the classifier.

Future work will include an in-depth analysis of our simu-

lation results in terms of classifier performance, network load,

event delivery rate, and energy consumption.

REFERENCES

[1] OMNET++ Network Simulation Framework. [Online]. Available:
https://omnetpp.org/

[2] C. Antonopoulos, S.-M. Dima, and S. Koubias, “Event Identification
in Wireless Sensor Networks,” in Components and Services for IoT

Platforms. Springer, 2017, pp. 187–210.

[3] A. Balazs, “International Vocabulary of Metrology-Basic and General
Concepts and Associated Terms,” CHEMISTRY International, 2008.

[4] A. Boulis et al., “Castalia: A simulator for wireless sensor networks and
body area networks,” NICTA: National ICT Australia, 2011.

[5] T. J. Chowdhury, C. Elkin, V. Devabhaktuni, D. B. Rawat, and J. Oluoch,
“Advances on localization techniques for wireless sensor networks: A
survey,” Computer Networks, vol. 110, pp. 284–305, 2016.

[6] J. E. Dennis Jr and R. B. Schnabel, Numerical methods for unconstrained

optimization and nonlinear equations. SIAM, 1996.

[7] N. Dziengel, M. Seiffert, M. Ziegert, S. Adler, S. Pfeiffer, and J. Schiller,
“Deployment and evaluation of a fully applicable distributed event
detection system in Wireless Sensor Networks,” Ad Hoc Networks,
vol. 37, pp. 160–182, 2016.

[8] K.-W. Fan, S. Liu, and P. Sinha, “Structure-free data aggregation in
sensor networks,” IEEE Transactions on Mobile Computing, vol. 6,
no. 8, 2007.

[9] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: a survey,” IEEE Wireless

Communications, vol. 14, no. 2, 2007.

[10] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition

Letters, vol. 27, no. 8, pp. 861–874, Jun. 2006.

[11] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proceedings of the 33rd Annual Hawaii International Conference on

System Sciences, Hawaii, USA, 2000, 10pp.

[12] B. Krishnamachari and S. Iyengar, “Distributed Bayesian algorithms for
fault-tolerant event region detection in wireless sensor networks,” IEEE

Transactions on Computers, vol. 53, no. 3, pp. 241–250, 2004.

[13] K. Langendoen and N. Reijers, “Distributed localization in wireless sen-
sor networks: a quantitative comparison,” Computer Networks, vol. 43,
no. 4, pp. 499–518, 2003.

[14] X. Luo, M. Dong, and Y. Huang, “On distributed fault-tolerant detection
in wireless sensor networks,” IEEE Transactions on Computers, vol. 55,
no. 1, pp. 58–70, 2006.

[15] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis diffusion
for robust aggregation in sensor networks,” ACM Transactions on Sensor

Networks (TOSN), vol. 4, no. 2, p. 7, 2008.

[16] A. Savvides, H. Park, and M. B. Srivastava, “The bits and flops of
the n-hop multilateration primitive for node localization problems,” in
Proceedings of the 1st ACM international workshop on Wireless sensor

networks and applications. ACM, 2002, pp. 112–121.

[17] G. Wittenburg, N. Dziengel, S. Adler, Z. Kasmi, M. Ziegert, and
J. Schiller, “Cooperative event detection in wireless sensor networks,”
IEEE Communications Magazine, vol. 50, no. 12, 2012.


