
Internal Iteration Externalized

Thomas Kühne

Staffordshire University, UK
T.Kuehne@soc.staffs.ac.uk

Abstract. Although it is acknowledged that internal iterators are easier
and safer to use than conventional external iterators, it is commonly as-
sumed that they are not applicable in languages without builtin support
for closures and that they are less flexible than external iterators.
We present an iteration framework that uses objects to emulate closures,
separates structure exploration and data consumption, and generalizes
on folding, thereby invalidating both the above statements. Our pro-
posed “transfold” scheme allows processing one or more data structures
simultaneously without exposing structure representations and without
writing explicit loops.
We show that the use of two functional concepts (function parameter-
ization and lazy evaluation) within an object-oriented language allows
combining the safety and economic usage of internal iteration with the
flexibility and client control of external iteration. Sample code is provided
using the statically typed Eiffel language.

1 Introduction

Collections play an important role in software design. Slightly surprisingly, the
case on how to organize collection libraries and provide iteration facilities for
them has not been closed yet. One reason for this are differences in the imple-
mentation languages used [22]. But also for a single language alternative designs
compete with each other [30]. In the following we investigate how to design a gen-
eral iteration scheme that is both flexible and easy to use. This paper compares
the two main approaches to iteration, internal and external iteration, and arrives
at a synthesis that virtually retains the advantages of both. The description of
the problem is followed by a solution whose details and advantages are described
in Sect. 4. The concluding remarks summarize and examine the implications for
language design.

2 Issues in Iterator Design

Collections of data elements, such as lists, trees, graphs, etc., are without doubt
very useful in the design of systems and for the implementation of algorithms.
Although we often want to treat a collection as a single entity we also frequently
need to individually access the contained data elements. The established mech-
anism for accomplishing this is an iterator, allowing us to step over all data ele-
ments until all have been visited. Whether we just want to access the elements,

Rachid Guerraoui (Ed.): ECOOP’99, LNCS 1628, pp. 329–350, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

330 T. Kühne

e.g., for printing (read iterator), search for a particular element satisfying cer-
tain criteria, modify the elements, or create a new collection of elements (write
iterator), depends on the intended purpose but the same basic iteration scheme
underlies all these examples.

It is clearly not an option to let clients iterate over collections using knowledge
about collection internals. Each client iteration would be subject to change when
collection implementations change. Evidently, an iterator abstraction is neces-
sary that allows accessing the elements of a collection independently of their
respective internal representation. With the decision for a dedicated iteration
abstraction, however, the following issues must be resolved:

• How to combine iteration and action? How do we combine an iteration al-
gorithm (e.g., a simple loop) with a particular function or action (e.g., print
an element)? The iterator client may do it by calling both, or the iterator
could be subclassed for each function, or the iterator could accept a function.

• Who knows how to iterate a collection? Where is the best place to put the
iteration logic? Will the collection explore itself or is it better to externalize
such functionality?

• Who controls the iteration? Who is in control of advancing the iteration and
who may decide to stop prematurely, i.e., avoid a full collection exploration?

• How to support multiple iteration strategies? Non-linear collections, such as
trees and graphs support different traversal strategies like breadth-first-
search and depth-first-search with variations such as pre-order, in-order, and
post-order traversal. How do we allow a choice between alternatives without
excessively widening the collection’s interface?

• How to allow several iterations in parallel? In which way can we support
multiple iterators using a shared collection? Two or more clients may want to
process the same collection with interleaving execution. It may even be the
case that a reading iterator uses the results of a write iterator that changes
the elements of a structure.

Some proposed solutions can easily be dismissed:

– Combining iterator and iteration function with inheritance [19,24,20] does
not scale with respect to the number of traversal alternatives and iteration
functions. Further problematic issues are described in [14].

– Equipping collections with a cursor that allows iteration of the whole collec-
tion (e.g., lists [23,29]) is problematic in the presence of multiple iterations.
Even if interference is prevented by providing a cursor stack, which clients
use to push and pop cursors, the resulting scheme is inelegant and error
prone [12]. This suggests that the state of iteration should be kept outside
the iterated collection.

– Schemes relying on co-routines or specializations thereof [18,25], are not
easily applicable in languages without these mechanisms.

We are left with two fundamentally different approaches:

Internal Iteration Externalized 331

1. External iterators place the iteration logic outside of collections and provide
clients with an interface to start, advance, and inquire the actual element of
an iteration:

from books.start until books.exhausted -- initialize & test
loop
io.putstring(books.item.title); -- iteration action
books.forth; -- advance iterator

end

2. Internal iterators are typically a part of the collection’s interface. When
given an iteration function they autonomously perform the traversal, thus,
releasing the client to provide a control structure:

books.do(printTitle); -- printTitle prints argument’s title

2.1 Internal Iteration

Internal iteration corresponds to functional mapping, i.e., the parameterization
of iterators with iteration functions, and there are a number of arguments in
favor of it: It adheres to the maxim “Write a Loop Once” [20], i.e., code the
traversal control once inside the collection and let all clients rely on it. Hence,
the duplication of virtually identical code in clients for stepping over a collection
is avoided.

Traversal strategies typically rely on internal collection details for stepping
over collections [25] and it is easier to use a recursive method for descending a
collection than to memorize an access path externally [8].

A particular expensive incident due to external iteration was caused when
the Mariner space-probe was lost due to an error in a loop [26]. In the Fortran
code of Fig. 1 the dot should have been a comma. As it happened, just the value
1.3 was assigned to DO3I and no iteration took place at all. An internal iteration
might not have been applicable, but at least the above example demonstrates
that (fatal!) errors can be introduced in even the most simple loops.

DO 3 I = 1.3

Code to be executed with I=1, 2, 3.

Fig. 1. Code example “Goodbye Mariner”

All the above observations argue in favor of making iteration an autonomous
operation of the collection, but:

“External iterators are more flexible than internal iterators. It’s easy
to compare two collections for equality with an external iterator, for ex-
ample, but it’s practically impossible with internal iterators. Internal it-
erators are especially weak in a language like C++ that does not provide
anonymous functions, closures, or continuations like Smalltalk and

332 T. Kühne

Clos. But on the other hand, internal iterators are easier to use, be-
cause they define the iteration logic for you. [8].”

– GOF Group

Definition Closure
A closure is a function equipped with a map from variable names to values.

Hence, a closure is a function that has partially or fully received its arguments
and awaits its evaluation.

A number of other authors agree that either builtin closure support is needed
to use internal iterators [2,12,8] or that internal iterators are inflexible to the
extent of disallowing the comparison of two collections [25,12,8,5,27].

Also, it seems that clients know best when an iteration can be stopped, e.g.,
when an element has been found, and internal iterators do not account for this1.

2.2 External Iteration

The Iterator pattern [8] implements external iteration and resolves a number
of issues: The combination of iterator and iterator function is trivial, since the
client calls both in a dedicated loop (see code in Sect. 2). Pattern Iterator gives
the client full control of iteration advancement and termination. It, furthermore,
allows multiple traversal strategies and multiple iterators on the same collection.
It is weak on requiring clients to duplicate control structures, time and again.
It also may force collections to provide a (possibly protected) interface to allow
their efficient scrutinization for traversal. Finally, an external iterator has to
keep track of the iteration state – which may involve book keeping of paths into
tree-like collections.

2.3 Comparison of Internal and External Iteration

Diametrical to an external iterator an internal iterator is strong on localizing the
control to one loop, information hiding of collection internals, and competence of
collection exploration. Unfortunately, it requires closures for combining iterator
and iteration function, takes termination control out of the client’s hands, and
allows only one iteration at a time. Furthermore, multiple traversal strategies
cause the collections interface to be bloated with iteration methods. Table 1
summarizes the comparison of external with internal iteration.

The last point in Table 1 refers to the fact that external iterators typically
depend on the properties of the collections they traverse (e.g., trees need different
iterators than linear collections). Therefore, it is common to observe a class
hierarchy of iterators paralleling a collection hierarchy [8,24].

While internal iterators seem to be more faithful to software design matters
than external iterators, they apparently let clients down in terms of straightfor-
ward (active) usage and flexibility.
1 This is not true for Smalltalk where blocks returning a value cause control to be

passed back to the iteration client.

Internal Iteration Externalized 333

Table 1. External versus internal iteration

Iterator kind
Iteration framework aspect external internal

combination of iteration and action is trivial ✓ ✓?

record keeping of iteration state is straightforward ✓

no special access interface to collection is required ✓

no explicit loop needed for client iteration ✓

client may stop iteration early ✓ ✓†

iterating multiple collections in lock-step is easy ✓

traversal alternatives do not bloat collection’s interface ✓

multiple iterations sharing one collection ✓

no parallel hierarchy of iterators and collections ✓

? Support for closures required.
† By inelegantly passing a continue?-flag from function to iterator.

3 Stream Based Iteration

An elegant way to resolve the forces in Table 1 is to

– provide a way to flatten collections to a stream of data and
– iterate internally over (multiple) streams.

Definition Stream
A stream is a possibly infinite list. Streams allow access to the first element

and to the tail of the stream only. Streams, hence, may produce elements only
when they are actually required. Clients can not distinguish between streams
that already know all their elements, produce them as blocks in a buffered fash-
ion, or produce them element-wise by demand. Streams can, therefore, be re-
garded as lazy lists.

For instance, a tree is first tranformed into a linear stream and then this stream is
consumed by an internal2 iterator. An element of the intermediate stream might
contain a collection element or a lazy exploration of further parts of the col-
lection, i.e., an iteration continuation yielding further collection elements when
inspected (see Fig. 2 and Sect. 4.3, Traversal alternatives). The stream consumer,
hence, can decide which parts are to be explored next.

While all streams share the same interface, it depends on the collection type
how many iteration continuations it produces as stream elements. The stream
consumer selects a traversal alternative (e.g., pre-order, in-order, post-order) by
evaluating the iteration continuations in the corresponding order.

Intriguingly, this approach manages to resolve all the forces discussed above
(see Sect. 4.3), apart from two remaining crucial points:
2 Note that “internal” now only characterizes the passive role of the client rather than

the location of the iteration interface with regard to the collection.

334 T. Kühne

Main Traversal
Strategy

Traversal
Commitment

Streamed Data

Iteration Continuation

IteratorCollection

Fig. 2. Iteration topology with lazy streams

1. How to circumvent the need for closure support?
2. How to avoid the inflexibility of internal iterators?

3.1 Eliminating the need for Builtin Closures

The first problem can be immediately solved by emulating closures. In an object-
oriented language it is very easy to use objects as function closures. Simply define
a Function interface (also see Fig. 9) with an application method, e.g.,

deferred class Function[In, Out] -- argument/result types
feature

infix "@" (a : In) : Out is deferred end; -- application
end

Subclasses then refine the generic type parameters and provide the implementa-
tion for various functions. For instance,

class Square
inherit Function[Integer, Integer];
feature

infix "@" (arg : Integer) : Integer is
do
Result := arg * arg;

end;
end

If a function requires two or more arguments then the result of the first ap-
plication is a further function object awaiting application to the rest of the
arguments. Hence, this design nicely incorporates partial parameterization [13]
(see the appendix or the full, clickable html source code [15] for details).

3.2 Making Internal Iteration More Flexible

The inflexibility of internal iterators, e.g., to compare two collections with simul-
taneous iterations, is easily fixed with a small but very effective idea. Indeed, it
is practically impossible to consider a second iteration while an internal iteration
focuses on its sole collection iteration. The problem, however, is easily resolved

Internal Iteration Externalized 335

by generalizing internal iteration from one to many collections (see Fig. 3). An
internal iterator, consuming two number streams, for instance, takes a function
with two parameters and applies it to the two foremost numbers. Then, both
streams are advanced simultaneously and the next application will be on the two
following numbers.

..., 7, 5, 3, 1

..., 7, 4, 3, 1

=
?

Fig. 3. Comparison of two collections in lock-step

To generalize from two to any number of input streams the processing func-
tion (e.g., equality) must process a list of arguments. Then, the arity of the
function is always one (one list) but the real number of arguments is determined
by the list length. Restricting all arguments to conform to the list type makes
this approach statically type safe with no need for dynamic type checks (re-
verse assignment attempts or downcasts). All that is needed is a (genericity)
mechanism that allows restricting the element type of a structure.

Transposing the list3 of input streams yields a structure ready to be processed
row by row (see Fig. 4).

1 3 4

1 3 5

transpose
=⇒

1 1

3 3

4 5

Fig. 4. Transposing lists

In case the input streams have different length then the shortest one deter-
mines the end of iteration. See the appendix for the Eiffel implementation of
transpose.

Note that transposition, i.e., the processing of multiple input streams in lock-
step is just one possible iteration scheme. A different operator might consume
the input streams with individual speeds, for instance, to implement merge sort.

The next step towards a definition of a multi-collection iterator is to define
a function that will process the rows of the transposition result. As it applies
(maps) a function to each row in the transposed structure we call it transmap.
3 We say “list” when referring to the ordered collection of input streams for clarity of

presentation only. Technically, this list will be a stream too.

336 T. Kühne

Definition Fold
A fold function processes a list with a function. Folding a list can yield any

result type including a transformed version of the input list. Typically, however,
a fold reduces a list to a single result by applying the function to the first element
and the result of folding the rest of the list. In order to define the value of folding
an empty list, an initial value is passed as an argument to fold. A transformed
result list may be obtained by using a function that transforms input elements
individually and builds up a list from the results.

The function argument to transmap will typically reduce (fold) one row into
a single result (see the appendix for an implementation of fold). For instance, a
product calculation is possible by reducing the list with multiplication. It is now
straightforward to calculate the element-wise products of two integer lists (see
Fig. 5).

1 3 5

4 6 8

transmap (fold (∗) 1)
=⇒

1∗4
3∗6
5∗8

≡
4

18

40

Fig. 5. Computing a list of products

Until now, function transmap allows varying the function to combine the
elements of multiple collections. However, we also need to iterate over the results.
For instance, it is only a matter of summing up the values in the above result
list to obtain the inner product of the two argument lists. Or, returning to
our original example, when comparing two collections the results of comparing
corresponding elements must be reduced to a single result (see Fig. 6).

1 3 4 . . .

1 3 5 . . .

transmap all equal
=⇒

1 = 1

3 = 3

4 = 5
...

≡

True

True

False
...

Fig. 6. Transmapping equality

Obviously, we need to reduce the result list with the logical “and” operator
to obtain a single equality result. Likewise, the result list of Fig. 5 requires
reduction with “+” to obtain the final inner product. Therefore, as the final
step to define the multi-collection iterator we reduce the results of processing

Internal Iteration Externalized 337

the rows to a single result. Here is how transfold4 can be expressed with Eiffel
assuming streams to be the list of input streams (see the appendix for its full
implementation):

Result := fold @ foldFunc @ init @
((map @ mapFunc) @ transpose(streams));

For instance, the application of transfold to “+” and (fold ∗ 1) on the argu-
ment streams of Fig. 5 will yield the result 62. Expressed with Eiffel code:

Result := transfold @ plus @ 0 @ (fold @ times @ 1) @ streams;

Functions foldFunc, mapFunc, and value init correspond to functions f , g , and
value a of Table 2 respectively. It lists all transfold parameters with their type
and meaning.

Table 2. Transfold’s arguments

Para-
meter type purpose

g [a] → b the function that is applied (mapped) to each row of
the transposed argument, transforming a row to an
element of the intermediate result of type b.

a c the initial element for producing the final result, used
as the induction base for an empty list.

f b → c → c function that finally reduces the intermediate result of
element type b to a result of type c, using the initial
element.

[[a]] → c resulting type of transfold after all arguments but the
last are supplied. Transforms a matrix (list of streams)
with element type a into a result of type c.

Given a function all equal that checks whether all elements in its argument
stream are equal, the application of transfold to and and all equal on the argu-
ment streams of Fig. 6 will yield False.

Note that, for example, in the context of comparing collections, lazy trans-
position and reduction functions allow stopping the exploration of the (possibly
infinite) argument streams when a non-equal argument pair has been found.

To illustrate the possible type changes from argument to result let us calculate
the sum of all row products from a matrix5 (see Fig. 7), using (very academically)
three different number types. We use

innerProd := transfold @ plus @ 0.00 @ (fold @ times @ 1.0);

4 Transpose and fold.
5 A matrix shall be represented as a list of row streams.

338 T. Kühne

where the input matrix contains integer elements, 1.0 denotes a real, and 0.00
denotes a double. Hence we establish the mapping [a 7→ integer , b 7→ real, c 7→
double]. See Fig. 7 for the calculation process.

8 1 6

3 5 7

4 9 2

transpose
=⇒

8 3 4

1 5 9

6 7 2

map (fold times 1.0)
=⇒

8 ∗ 3 ∗ 4 ∗ 1.0

1 ∗ 5 ∗ 9 ∗ 1.0

6 ∗ 7 ∗ 2 ∗ 1.0

≡
96.0

45.0

84.0

fold plus 0.00
=⇒ 96.0 + 45.0 + 84.0 + 0.00 ≡ 225.00

Fig. 7. Transfolding the inner product of a matrix

Folding does not have to imply reduction, though. Using functions reverse
and add back that establish the mapping [a 7→ integer , b 7→ [integer], c 7→
[[integer]]], we may transpose a matrix along its minor axis (see Fig. 8).

8 1 6

3 5 7

4 9 2

transpose
=⇒

8 3 4

1 5 9

6 7 2

map reverse
=⇒

4 3 8

9 5 1

2 7 6

fold add back []
=⇒

2 7 6

9 5 1

4 3 8

Fig. 8. Minor axis matrix transposition

We used a mixture of illustrations, functions, and sketches of Eiffel code
to demonstrate transfold and its associated functions as clearly and concisely as
possible. With the help of two functional patterns (Function Object and Lazy
Object [16]), it is very easy to fully implement the solution in an object-oriented
language (see also the clickable html code [15]).

Internal Iteration Externalized 339

4 Stream Based Iteration Framework

The following sections describe the proposed iteration framework with a class di-
agram, a list of participants with their responsibilities, and the sequence of events
for an iteration. Section 4.3 concludes the description with a list of framework
properties.

4.1 Framework Participants

Figure 9 shows all participants in the iteration framework and their relationships.
Dashed boxes at the top right hand corner of a box indicate generic classes.

Client

ConcreteFunction

Transfold

Stream

item : G

tail : Stream[G]

consumes

Function

ConcreteStream

is-a

creates

@(arg : I) : O

asStream : Stream

creates

Collection

applies

is-a

ap
pl

ie
s

iterates over

produces stream with

passes

Fig. 9. Structure diagram

• Client
– requests a Collection to provide a Stream of itself.
– passes two Functions and a value as parameters to Transfold.

• Collection
– provides a ConcreteStream, containing a flattened version of itself.
– uses a lazy Function to produce a ConcreteStream.

• Function
– provides an application interface for all functions including the stream

building function, the Transfold parameters, and Transfold.
• Stream

– provides an interface to access any concrete streams.
– implements a lazy, infinite list semantics.

• Transfold
– takes two Functions and a value as processing parameters.
– transforms its input (a Stream of Streams) to an arbitrary result type.

340 T. Kühne

4.2 Sequence of Events

– A client requests a collection to flatten itself to a stream.
– The collection’s asStream method and a lazy function mutually call each other

to explore the collection lazily, while producing a stream.
– The client uses or creates two function objects, which it passes – along with

an initial value – to a transfold object.
– The transfold object lazily accesses the collection stream by using the stream

interface, e.g., operations “item” and “tail”. While the stream is accessed,
the argument functions to transfold are applied accordingly.

The purpose of the above details is to present explicitely the mechanics of
the iteration framework. Real clients, however, should not have the burden of
asking the collection for a stream and then of feeding it into an iterator. It is
more reasonable to use a method in an abstract collection interface that takes
all transfold parameters and does the stream creation and feeding behind the
scenes.

4.3 Framework Properties

IAbstraction. Accessing the elements of a collection does not expose its internal
representation.
ILocality. A particular operation can be performed by just passing function
objects, without requiring inheritance or client control structures.
Since there is only one iteration loop, used by each client, loop-related errors are
much easier to avoid and to discover. More time can be spent on the validation
of a single loop6 and any errors are removed for all clients.
IMultiple Traversals. When a collection is to be iterated by multiple clients
in alternation it is possible to share the (read-only) collection stream for inde-
pendent consumption by multiple clients. Hence, any exploration effort by the
collection is beneficial to all consumers. Once explored, a subpart does not need
to be traversed again due to the call-by-need semantics of streams. Whenever
a read iterator needs to see the results of a write iterator we propose to use
a chain of iterators where collections are not mutated but intermediate results
are produced (see Fig. 10). Instead of destructively changing the contents of
one collection – which can cause considerable trouble in the presence of shar-
ing – an intermediate collection which contains the new data is produced to be
subsequently consumed by the read iterator.
IConnectivity. Stream producing transfolds allow cascaded transformations7

and converting one collection into another one, possibly with intermediate pro-
cessing, using collection constructors with stream arguments to build collections
(see Fig. 10).
Intermediate results never exist in their entirety due to lazy evaluation. The
demand driven characteristics of lazy evaluation only ever creates as much of
6 By referring to “loop” we also include the stream generation processes.
7 Note that one transfold can perfectly just consume a single stream.

Internal Iteration Externalized 341

intermediate construction

streamresultsstream

flattening

tion
Collec-

tion
Collec- Transfold Transfold

Fig. 10. Transformation chain

the intermediate results as necessary to pass the desired information through.
An intuitive picture of the process is to imagine the source collection to be a wool
bale being unwound, while just the thread is passed through the transfolds, to
wind the result wool bale. Maintaining the internal shape of a collection during
a transformation as shown above is easier with destructive updates. However,
the collection constructor of the destination collection can use the order of the
arriving elements and its own structure invariants to create a collection that is
behaviorally equivalent to the original.
ITermination control. Both transfold and the client are in control of iteration
advancement and termination. Through the use of lazy stream processing func-
tions, the collection exploration is completely demand driven. When a stream
processing function does not evaluate its second argument – e.g., an And does
not need to examine the second argument, if the first is already False – the
whole transfold process stops. This scheme is far more elegant than letting an
iteration function return a continue?-flag, as designed in the internal version of
the Iterator-pattern [8].
ITraversal Alternatives. Collections produce a stream containing elements and
iteration continuations which are again represented by streams (see Fig. 2). For
instance, graphs can produce a stream representing a forest (a stream of tree
streams). Stream consumers decide in which order they consume elements and
explore continuations. Hence, it is easy to support a variety of traversal strategies
outside of collections (see Fig. 11).

Main Traversal
Strategy In-Order

consumer

Pre-Order

consumer

Post-Order

consumer

132nd rd st

1 23 st ndrd

Tree 2 1stnd3rd

Fig. 11. Deriving traversal alternatives

One can even dynamically dispatch on traversal strategies. Through lazy explo-
ration of the collection the stream processing functions (passed as arguments to
a transfold object) are in command of the exploration order.

342 T. Kühne

Not all traversal alternatives, however, can be derived from just one main traver-
sal strategy while retaining lazy exploration. Assume, for instance, a linear
structure providing the elements one by one. It is then not possible to derive
a backward iteration from this main traversal strategy without fully exploring
the structure to arrive at the last element. In such cases it is possible to provide
alternative asStream methods in the collection interface.
ISeparation. The best of both external and internal iteration are combined by
separating the exploration of a collection and the subsequent consumption of the
exploration result.
+ Since iteration (consumption) is defined outside collections, their interfaces

can be kept small. The only trace of an iteration is an asStream method, which
is of general interest anyway (see bullet “Streamable Collections” below).

+ The responsibility to explore a collection is assigned to the most competent
instance, the collection itself. The collection may use all its internal knowl-
edge and recursive calls – thereby memorizing an exploration stack – to per-
form its exploration. Contrast this with a much more complicated scheme
implementing recursion with an explicit stack and counting (observing) node
removals [38].
It is possible to separate consumption and exploration without having the
overhead of a full exploration, because the intermediate stream is lazily pro-
duced. For a general account on pattern Lazy Object see [16].

+ Streams work as a lingua franca8 between collections and iterators. Both
stream consumption (iteration) and generation are easy to vary. Iteration
schemes, such as transfold, must be defined only once, for all streamable
collections.
Special traversal orders may depend on stream organization but not on col-
lections, which is a useful indirection to decrease coupling.

IStreamable Collections. The asStream method of data collections can also be
used for many other purposes, such as a persistence or net-transfer protocol
mechanisms.
Collections may be transfered into each other by means of an intermediate
stream. For instance, streaming a Bag to a Set is an elegant way to remove du-
plicates. No special mechanisms, e.g., the Serializer pattern [31], will be needed
anymore to support persistence in this manner.
This also implies that there is a uniform way to construct collections, for example,
from constants. Any collection type that allows manifest constants in the syntax
of a language (e.g., arrays), could be used to be transformed to the desired
collection type.
IVersatility. Folding may implement a wealth of operations, for instance for
lists: sum, product, average, max, min, map, filter, reduce, reverse, append, exists, all,
variance, horner, etc. According to [37], 60% of the code in the Fortran Scientific
Subroutine Package fits neatly into the maps, filters, and accumulations (i.e.,
transfold) paradigm.

8 Agreed language of communication.

Internal Iteration Externalized 343

IHigh-level Mindset. A capable, high-level operation like transfold enables ap-
proaching problems with a much more powerful decomposition strategy com-
pared with a procedural paradigm, restricted to e.g., array indexing. Timothy
Budd tells an anecdote of a Fortran programmer who, predetermined to think
in terms of loops and array access, designs a three-level nested loop to find a
pattern repetition in a DNA sequence. His algorithm’s complexity turns out to
be O(M ∗ N2), where M = pattern length and N = sequence length. An Apl
programmer, thinking in high-level operations like vector to matrix conversion,
sorting, and matrix reduction (all akin to and expressible with transfold), ar-
rives at a solution with complexity O(M ∗N lg N) [5]. As the anecdote suggests,
high-level operations allow problems to be approached from a different, valuable
perspective.
IChoice of Style. In cases where no predefined iteration scheme, like transfold,
seems appropriate, it is possible to consume a collection stream with an external
iterator, i.e., to write a control loop which consumes the stream. The essence of
the proposed iteration framework lies in stream producing collections, function
objects, and lazyness. The transfold operator is just one of many possible.
IFixed Forms. A view emerged from the so-called squiggolist school [21] aims
at a formalism that does not allow users the free definition of recursive functions
but supplies a limited set of functional forms, such as fold, that are well controlled
and amenable to program transformations. Relying on a set of functional forms
(e.g., transfold) is advantageous in many ways:
– Algorithms using the forms have a concise, readily understandable structure

as well as a determined complexity in time and space. Any programmer
familiar with the functional forms will understand the algorithm by just
looking at the essential parameterized parts.

– Well-known laws for the functional forms may be exploited to transform
programs. For instance, instead of multiplying all elements of a collection
by 2 and then summing them up, they can be summed up first applying
the multiplication by 2 to the sum, hence only once. The general law for
this transformation is a free “fold-fusion” theorem that is derivable from the
signature of fold [36]. More such laws can be found in [21].

– Algorithms written as a combination of parameterized combinators can be
easily varied. For instance a tournament-sort combinator taking two reduc-
tion strategies as parameters can express InsertSort [3], TreeSort [7], and
ParallelTournamentSort [33], just by using different combinations of the two
reductions operators [10]. ParallelTournamentSort , in fact, has very desir-
able properties, which demonstrates that using standard combinators does
not necessarily imply inefficient solutions and may, on the contrary, help to
discover better solutions.

IContra-Indication. This iteration framework should not be used in case of
very tight memory and time constraints, where the overhead of an intermediate
stream and emulation of lazy evaluation is not tolerable. Management of stream
elements consumes time. Stream suspensions and lazy function closures represent
a memory overhead. In most cases, however, system performance should not be
a problem.

344 T. Kühne

5 Related Work

Although C++ usually promotes external iteration, there is an example of an
internal iterator (foreach) interface in the Borland C++ libraries [4]. Since it
builds on passing function pointers, it must use an extra, unsafe void type for
passing parameters.

The Standard Template Library (STL) [34], provides function objects, a va-
riety of (forward, backward, etc.) iterator types including stream iterators. How-
ever, iterators are of the external type and collections directly return iterators
instead of streams with continuations.

The generic collection library for Java (JGL) [28] has its roots in STL. It
provides an alternative to the Java collections API [35]. In a readers poll [30] the
usage of function objects within the JGL was found to be powerful and flexible
while the collections API was conceived to be more lightweight and simpler to
use.

The function fold originates from functional programming [3], but is also
used in Scheme [1] and available in the Smalltalk library [17]. Smalltalk
users do not use it frequently [32], probably because they are unfamiliar with the
nature of folding and its peculiar name (inject: into:). The Smalltalk collection
library even contains a with: do: method, allowing iteration over two collections
in parallel, which represents a special case of transfolding. Smalltalk also uses
streams to implement concatenation of collections efficiently. The caching effect
of streams eliminates the need to repeatedly generate the prefix of sequenced
concatenations like coll1 + coll2 + coll3 + coll4.

Apl [9] is well-known for its high-level operations on vectors, matrices, and
structures of even higher dimension. Three of its four primitive extension oper-
ators9, reduction (f/A), scan (f\A), and innerProduct (Af.gB), can directly be
expressed with transfold. The fourth, outerProduct (A◦.fB), is expressible with
a combination of transfold and map. Function map is just a (trans-)fold with ar-
gument functions that do not reduce the input stream but only apply a function
to it.

An interesting competitive iteration approach is set out by the Sather pro-
gramming language. Language support for iterators – in the form of a restricted
kind of coroutines – allows defining collection exploration within collections while
still enabling flexible, external iteration style, consumption [25]. The open ques-
tions are which style (passing functions or coroutine-loops) is more expressive
and understandable, and whether possible code optimizations by the Sather
compiler justify the requirement for an additional language construct. In effect,
the ability of lazy evaluation to defer calculations and resume control to them
whenever necessary is very similar to coroutines. With coroutines, however, the
emphasis is on explicitely scheduling control whereas lazy evaluation causes a
more declarative, demand driven style.

Kofler investigated how to make iteration over collections which are changed
during iteration a safe and unambiguous operation [12]. Using transfold’s scheme
9 These extend an operation to a collection.

Internal Iteration Externalized 345

a so-called iterator adjustment scheme [12], is particular well implementable,
since the collection controls its own exploration and, thus, may adjust an ex-
ploration process according to element removal or insertion. Consequently, no
registering of active iterators [12] is necessary. In cases where updates should
have no effect on the iteration process, it is possible to simply iterate on a copy
of the collection.

6 Conclusions

Neither external iterators nor internal iterators operating on a single collection
only provide a satisfactory general iteration framework. Functional techniques
(made available by the functional patterns Function Object and Lazy Object [16]
for closure and lazy semantics emulation respectively), however, make internal
iteration feasible for standard object-oriented languages. Function objects en-
able behavior parameterization, whereas lazy evaluation makes the separation
of collection exploration and data consumption feasible. Combined with the idea
of simultaneously processing multiple collections during one internal iteration,
the result called “transfold” provides the safety and economic efficiency of inter-
nal iteration while maintaining the flexibility and control of external iteration.
Transfold, however, is just one of many possible operations. Other iteration
schemes may process multiple collections without imposing a lock-step process-
ing fashion. The presented stream based iteration framework even extends into
an approach for creating data from manifest constants, transforming collections
into each other, and data persistence.

Some users, who are unfamiliar with the map/fold style of functional pro-
gramming, may find the general nature of transfold intimidating and awkward
to use. Nevertheless, transfold can be used to build specialized iteration oper-
ations that are easier to use. With just one iteration primitive (folding) many
operations can be expressed (see Sect. 4.3, Versatility). This is in contrast to,
e.g., Eiffel’s plethora of iteration features (do all, do if, do while, do until, etc.)
in its iteration classes [24]. Although Eiffel supports only one language loop
construct, its library approach to iteration apparently does not allow such a
minimalistic solution. While not every computable function is expressible with
folding [11], it is sufficiently general to rely on it as the basic iteration princi-
ple. Fortunately, stream based iteration easily allows the introduction of new
iteration schemes whenever necessary.

In general, internal iteration is better suited for parallel execution since,
unlike a custom external iteration, the iteration process is guaranteed to be
encapsulated [2]. In particular, functional forms such as map or parallel-reduce
allow parallel evaluation. In fact, there is a tradition in the area of parallel
computations to employ fixed evaluation forms called algorithmic skeletons [6].

Several improvements to current object-oriented languages would aid the con-
struction of the transfold framework. First, instead of manually defining function
object classes that just forward arguments to implement partial parameteriza-
tion, the language should do this automatically. The recently proposed mech-

346 T. Kühne

anism for delayed calls in Eiffel supports partial parameterization to some
extent. While it is possible to leave parameter positions open during the cre-
ation of a delayed call, it does not seem to be possible to obtain another delayed
call from a delayed call by passing a subset of the open parameters only.

Second, using Eiffel it is not possible to achieve transparent lazy semantics
for basic types, e.g., Integer, because access to them is implicit, i.e., there is
no access method which could defer the calculation. Although, it is possible
to use wrapper classes for basic result types, which demand using a value or
item method to access values (see Eiffel’s NUMERIC REF classes or Java’s
approach to treat basic types as objects), this solution obviously makes lazy
semantics visible to clients. Language support for lazy semantics could fix this
and in addition eliminate the need for an extra lazy stream generating function
object. Lazy collection methods could achieve lazy exploration on their own,
thus implementing collection exploration at the best possible location, inside
collections only.

Third, although standard parametric polymorphism is sufficient to support
transfold with regard to its flexible types, type system support could be much
better. For instance, the Eiffel implementation forces us to include the inter-
mediate (row result) type in the list of generic parameters for Transfold. This is
unavoidable because it is the only way to ensure that the result type of the row
processing function (g) and the input type of the row results reduction function
(f) match. Eiffel does not provide access to the actual value of the generic
type parameter of one function in order to match it with the argument type of
another. Hence, the introduction of dependent types would further support the
definition of transfold in the presence of static typing. Interestingly, the way C++

treats generic type parameters implicitly, does not cause the above complication.
While the usefulness of function objects in object-oriented languages is gen-

erally acknowledged by now, the above observations also strengthen the case
for integrating a seemingly exotic functional concept, i.e., lazy evaluation, into
object-oriented languages. The benefits of using a complete functional pattern
system and its implications on language design are described in [16].

Acknowledgments

The author would like to thank Thilo Kielmann for his feedback, John Hopkinson
for proof reading, and the anonymous reviewers for their extremely knowledge-
able and helpful comments.

References

1. Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Com-
puter Programs. The MIT Press, Cambridge, MA, London, 6th edition, 1987.

2. Henry G. Baker. Iterators: Signs of weakness in object-oriented languages. ACM
OOPS Messenger, 4(3):18–25, July 1993.

Internal Iteration Externalized 347

3. Richard Bird and Philip Wadler. Introduction to Functional Programming. C.A.R.
Hoare Series. Prentice Hall International, 1988.

4. Borland. Borland C/C++ 4.0 Reference Manual. Borland, Inc., 1994.
5. Timothy Budd. Multiparadigm Programming in Leda. Addison-Wesley, 1995.
6. John Darlington, Yi-ke Guo, Hing Wing To, and Jin Yang. Parallel skeletons for

structured composition. In PPoPP ’95, pages 19–28, St. Barbara, CA, July 1995.
7. R. W. Floyd. Treesort (algorithm 113). CACM, December 1964.
8. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: Elements

of Object-Oriented Software Architecture. Addison-Wesley, 1994.
9. Edward Harms and Michael P. Zabinski. Introduction to APL and computer pro-

gramming. Wiley, 1977.
10. Aaron Kershenbaum, David Musser, and Alexander Stepanov. Higher-order im-

perative programming. Technical Report 88–10, Rensselaer Polytechnic Institute
Computer Science Department, April 1988.

11. Richard B. Kieburtz and Jeffrey Lewis. Programming with algebras. In Advanced
Functional Programming, number 925 in Lecture Notes in Computer Science, pages
267–307. Springer, 1995.

12. Thomas Kofler. Robust iterators for ET++. Structured Programming, 14(2):62–85,
1993.

13. T. Kühne. The function object pattern. C++ Report, 9(9):32–42, October 1997.
14. Thomas Kühne. Parameterization versus inheritance. In Christine Mingins and

Bertrand Meyer, editors, Technology of Object-Oriented Languages and Systems:
TOOLS 15, pages 235–245, Prentice Hall International, London, 1995.

15. Thomas Kühne. Transfold Eiffel code implementation: Classes & HTML,
http://www.soc.staffs.ac.uk/~cmttk/transfold.html, November 1998.

16. Thomas Kühne. A Functional Pattern System for Object-Oriented Design. ISBN
3-86064-770-9, Kovač Verlag, Hamburg, 1999.

17. Wilf LaLonde. Discovering Smalltalk. Benjamin / Cummings Publishing, 1994.
18. Barbara Liskov and John Guttag. Abstraction and Specification in Programm

Development. MIT Press, 1986.
19. O. L. Madsen, K. Nygaard, and B. Möller-Pedersen. Object-Oriented Programming

in the BETA Programming Language. Addison-Wesley and ACM Press, 1993.
20. R. Martin. Discovering patterns in existing applications. In J. O. Coplien and

D. C. Schmidt, editors, Pattern Languages of Program Design, pages 365–393.
Addison-Wesley, 1994.

21. E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Proceedings of the 5th ACM Conference
on Functional Programming Languages and Coomputer Architecture, Cambridge,
Massachusetts, LNCS 523, pages 124–144. Springer Verlag, August 1991.

22. Gisela Menger, James Leslie Keedy, Mark Evered, and Axel Schmolitzky. Collec-
tion types and implementations in object-oriented software libraries. In The 26th

TOOLS conference USA ’98, 1998.
23. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood

Cliffs, NJ, 1988.
24. Bertrand Meyer. Reusable Software. Prentice Hall, 1994.
25. Stephan Murer, Stephen Omohundro, and Clemens Szypersky. Sather Iters:

Object-oriented iteration abstraction. Technical Report TR-93-045, ICSI, Berkeley,
August 1993.

26. P.G. Neumann. Risks to the public in computer systems. ACM Software Engi-
neering Notes 11, pages 3–28, 1986.

348 T. Kühne

27. Peter Norvig. Design patterns in dynamic programming. Presentation at Object
World ’96, May 1996.

28. ObjectSpace. JGL – the generic collection library for java v3.0,
http://www.objectspace.com/products/jgl/, 1997.

29. Stephen Omohundro and Chu-Cheow Lim. The sather language and libraries.
Technical Report TR-92-017, ICSI, Berkeley, March 1992.

30. Reader poll. Schould Sun scrap its collections API in favor of the more robust
JGL?, http://www.javaworld.com. Java World, August 1998.

31. D. Riehle, W. Siberski, D. Bäumer, D. Megert, and H. Züllighoven. Serializer. In
R. C. Martin, D. Riehle, and F. Buschmann, editors, Pattern Languages of Program
Design 3, Reading, Massachusetts, 1997. Addison-Wesley.

32. David N. Smith. Dave’s Smalltalk FAQ. dnsmith@watson.ibm.com, July 1995.
33. A. Stepanov and A. Kershenbaum. Using tournament trees to sort. Technical

Report 86–13, Polytechnic University, 1986.
34. A. Stepanov and M. Lee. The standard template library. ISO Programming Lan-

guage C++ Project. Doc. No. X3J16/94-0095, WG21/NO482, May 1994.
35. SUN. Java collections API, http://java.sun.com/products/jdk/1.2/docs/

guide/collections/overview.html, 1997.
36. Philip Wadler. Theorems for free! In 4th International Symposium on Functional

Programming Languages and Computer Architecture, London, September 1989.
37. Richard C. Waters. A method for analyzing loop programs. IEEE Transactions

on Software Engineering, 5(3):237–247, January 1979.
38. M. A. Weiss. Algorithms, Data Structures and Problem Solving with C++. Addison

Wesley, 1996.

Appendix

The following code sketches should provide enough information concerning the
implementation of transfold with Eiffel. A complete set of all required classes
and a working test class, however, can be obtained from the author’s home-
pages [15].

Section 3.2 discussed the calculation of the inner product of a matrix (see
Fig. 7). We can code the corresponding inner product operation in Eiffel as:

local
ip : Function [Stream [Stream [Integer]], Double]

...
ip:=transfold @ plus @ 0.00 @ (fold @ times @ 1.0);

We use the same type progression (integer, real, double) for the intermediate
results as in Sect. 7. Therefore, function objects times and plus must promote
from integer to real and real to double respectively.

The ip function can be now be applied to a matrix. So, constructing integer
streams with addItem and building the list of input streams with addStream –

vec1, vec2, vec3 : Stream [Integer];
vecs : Stream [Stream [Integer]];
...

Internal Iteration Externalized 349

vec1:=addItem @ 8 @ (addItem @ 1 @ fromConst (6));
vec2:=addItem @ 3 @ (addItem @ 5 @ fromConst (7));
vec3:=addItem @ 4 @ (addItem @ 9 @ fromConst (2));
vecs:=addStream @ vec1 @

(addStream @ vec2 @ (addStream @ vec3 @ void));

– the following function applications yield the results given in Fig. 12.

io.putdouble (ip @ vecs);
io.putdouble (ip @ vecs.tail);

225 = ip @ vecs

8<
:

8 1 6
3 5 7
4 9 2

�
ip @ vecs.tail = 71

Fig. 12. Inner product application

The row processing function Fold, used in the implementation of ip and
Transfold is implemented (omitting the preceding argument collection classes)
as:

class Fold2[B, C] -- B = stream element type
inherit Function[Stream[B], C]; -- C = fold result type
creation make
feature

func : Function[B, Function[C,C]]; -- function argument
init : C; -- initial value argument

make(i : like init; f : like func) is -- called by Fold1,
do -- whose application method "@"
init:=i; -- receives "f". Fold1’s make is
func:=f; -- is called by Fold’s application

end; -- method, which received "i".

infix "@" (stream : Stream[B]) : C is
local fold : expanded Fold[B, C];
do
if stream=void then -- end of input stream?

Result:=init; -- yes, return initial value.
else

Result:=func @ stream.item @ -- no, apply recursively.
(fold @ func @ init @ stream.tail);

end;
end;

end

350 T. Kühne

With the help of Fold and Map, implementing the body of Transfold is
straightforward:

class TransFold3[A, B, C] -- A = element type
inherit Function[Stream[Stream[A]], C] -- B = reduction result

StreamUtility[A] -- C = transfold result
creation make
feature

foldFunc : Function[B, Function[C, C]]; -- result processing
init : C; -- initial value
mapFunc : Function[Stream[A], B]; -- row processing

make(f : like foldFunc; i : like init; m : like mapFunc) is
do
foldFunc:=f;
init:=i;
mapFunc:=m;

end;

infix "@" (streams : Stream[Stream[A]]) : C is
local
map : expanded Map[Stream[A], B];
fold : expanded Fold[B, C];

do
Result:=fold @ foldFunc @ init @

((map @ mapFunc) @ transpose(streams));
end; ...

The use of expanded is a language idiom to save the otherwise necessary explicit
attachment of an object to map and fold.

The transpose method of class TransFold3, nicely demonstrates a high-level,
functional, internal iteration style, which is possible using streams and functional
forms such as map and fold.

transpose(rows : Stream[Stream[A]]) : like rows is ...
do

newRow:=mapToHeads @ head @ rows; -- collect all row heads
tails:=mapToTails @ tail @ rows; -- collect all row tails

if (fold @ oneEmpty @ False @ tails) then -- row exhausted?
tails:=void; -- yes, end of result rows

else
tails:=transpose(tails); -- no, transpose the rest

end;

Result:=addStream @ newRow @ (tails); -- build result
end

	Introduction
	Issues in Iterator Design
	Internal Iteration
	External Iteration
	Comparison of Internal and External Iteration

	Stream Based Iteration
	Eliminating the need for Builtin Closures
	Making Internal Iteration More Flexible

	Stream Based Iteration Framework
	Framework Participants
	Sequence of Events
	Framework Properties

	Related Work
	Conclusions

