
Profiles in a Strict Metamodeling Framework

Colin Atkinson and Thomas Kühne

AG Component Engineering,
University of Kaiserslautern,

67653 Kaiserslautern, Germany
{atkinson,kuehne}@informatik.uni-kl.de

Abstract
If the UML is to continue to meet the expectations of its ever-growing user

community it is essential that it offer a simple and coherent mechanism for users to
tailor the language to their specific needs. However, current UML extension
approaches are not only unnecessarily limited in the capabilities that they provide, but
also break some of the fundamental tenets of meta-modeling in a multi-level
framework. In particular, they are all based on the assumption that instantiation, in
one form or another, is the only mechanism by which end users can apply predefined
model elements in their own applications. In this paper we identify the problems
associated with this limitation and explain why inheritance is also important for
allowing users to apply predefined model elements. We point out the fundamental
differences and relationships between instantiation and inheritance for defining UML
profiles and provide guidelines as to which mechanism should be used under which
circumstances. We conclude by describing why both mechanisms should be utilized
in the definition of UML profiles in the context of strict, linear metamodeling
frameworks.

Keywords

 metamodeling, strictness, profiles, UML, inheritance, classification

Introduction

The success of the UML in a wide range of application domains has made it important
to view the standard more as a family of languages, sharing a common core, than as a
single language supporting minimal context-specific extensions. Current plans for the
UML's evolution therefore envisage a significant shrinkage of the UML core, coupled
with the definition of an enhanced extension mechanism to support the addition of
domain and user specific modeling concepts [8]. Several different extension
mechanisms have been proposed [5], [6], but the most prominent is the "profile
mechanism" first described in a white paper for the OMG Analysis and Design
Platform Task Force [10], and subsequently elaborated in later versions of the UML
[9].

Appeared in Science of Computer Programming, Vol. 44, Issue 1, July 2002, 5--22

Like any description language, the purpose of the UML is to define a coherent and
useful set of concepts that users can apply in their own work. With object-oriented
languages such as the UML that offer user-definable classes, there are two basic ways
of achieving this. Concepts can either be defined within the core language along the
lines of traditional non-object-oriented languages, or they can be defined as classes
within the predefined "standard" libraries. Both approaches are put to full use in
object-oriented languages such as Smalltalk and Java which have relatively small core
language definitions with comparatively large supporting libraries. The only
difference between classes in these standard libraries and classes added by the user is
that they are predefined alongside the language definition as part of the technology
standard. Thus we use the adjective "predefined" to refer to any concept defined
within the language standard ([9] in the case of the UML) or in the standard working
environment of a particular user. Note that the notion of something being
"predefined" is relative to the user. For a UML user working for a specific company,
the predefined modeling concepts are those in the UML standard plus those in any
profile(s) whose use is mandated by the company (e.g. the company profile etc.).

Although the currently proposed UML tailoring mechanisms differ in their details,
they all take the view that the definition of predefined model elements is a matter for
the "meta" level in the OMG's standard four-layer modeling architecture [9], and that
users should apply the predefined model elements only by instantiating them.

In this paper we argue that the assumption that predefined model elements should
only reside at the meta level is flawed, and that inheritance at the regular "model"
level is also an important mechanism for applying predefined model elements. In
other words, it must be possible to predefine model elements at the model level (for
inheritance) as well as at the meta level (for instantiation). Using an example, we
demonstrate how, for specific purposes, inheritance enables the predefinition of
modeling elements and/or their properties in a much more natural way than
instantiating elements from the meta level (e.g. stereotyping). After establishing
guidelines as to when to use which mechanism, we apply these principles to
determine how a profile mechanism should fit into a strict metamodeling architecture,
such as that envisaged for an improved UML infrastructure [8].

Profiles and the Standard Modeling Architecture

All UML modeling takes place within the context of the standard four-level OMG
model architecture depicted in Fig. 1.

2EMHFWV �0��

0RGHOV �0��

0HWD0HWD0RGHO �0��

0HWDPRGHO �0��

02)

27+(5 67$1'$5'6

('2&

0\3URILOH

5HDO7LPH 2/$3

&:080/

Fig. 1. The OMG view of profiles

The top (M3) level in this scheme is the so called meta-metamodel, or meta-object
facility (MOF), that defines the basic concepts from which specific metamodels are
created at the meta (M2) level. This includes the UML metamodel and other data
representation standards such as the CWM, which as illustrated in Fig. 1, are regarded
as being instances-of the MOF, residing at the M2 level. Normal user models, created
using the concepts of the UML or CWM, are regarded as residing at the M1 level, and
the run-time data is regarded as residing at the M0 level.

In defining the four level model architecture, the UML specification [9] states that
"A model is an instance of a metamodel" and "A metamodel is an instance of a meta-
metamodel." This makes it clear that the basic relationship between the layers is
intended to be the instance-of relationship. However, this definition leaves many
questions unanswered, in particular –

1. What is the precise nature of the instance-of relationship?
2. What does the instance-of relationship between models mean in terms of the

relationships between the model elements within the models?

The answers to these questions have a critical bearing on the semantics and practical
properties of any profile mechanism. We discuss these further in the following
subsections.

Instance-Of Relationship

An instance-of relationship exists between two model elements when one element, X,
is instantiated from another, Y. X is then said to be an instance-of Y. Establishing an
instance-of relationship can be understood both in terms of set membership and as a
mechanism for deriving one model element from another.

 From a set theory perspective, the instance-of relationship could more precisely be
referred to as “member-of”. If X is an instance of Y, the definition of Y, known as the
intension of the concept, defines the properties which all instances (e.g., X) of the
concept have to satisfy. The set of all instances (i.e. members) of a concept is known
as its extension.

As a mechanism for deriving one model element from another, instantiation can be
understood as a creation activity, which uses a template (Y) to stamp out an instance
(e.g., X). With this interpretation, the instance-of relationship could more precisely be
referred to as “created-by”. When an element X is created from another Y, the
attributes of Y become slots of X, with appropriate values, and the associations
involving Y become links involving X. This means that the properties defined in a
model element can only affect its instances, and not the instances of its instances. In
other words, it can pass information across only one instantiation step. An alternative
form of (deep) instantiation, in which properties can be propagated across more than
one instance-of relationship, is described in [4]. However, in this paper we rely on the
traditional shallow semantics of instantiation, which to date has been assumed for the
UML metamodeling architecture.

If the extensions of all classes in a system are mutually disjoint, these two
interpretations of the instance-of relationship are equivalent, since then the only way
for an element to be a member-of the extension of a class is to be created from it.
However, when the extensions of classes are allowed to overlap, and subsets of their
extensions are defined, the distinction between the two interpretations becomes more
subtle. Subsets of extensions are created when subtyping (or specialization as it is
known in the UML) is used. If Z is a subtype of Y, the extension of Z is a subset of
the extension of class Y, and every member of Z is also a member of Y. This is
related to the idea of polymorphism in object-oriented systems in which an instance-
of Z can be viewed as an instance-of Y, and in fact as an instance-of all Z’s
superclasses.

Two important conventions of contemporary object-development approaches
govern the relationship between the two views of instantiation mentioned above in the
presence of subtyping. The first is that an object can be created by one and only one
class. In UML terms, an object can have only one classifier. In contrast, an object can
be a member-of multiple classes in addition to the one from which it is created. The
other convention is that if an object X is a member-of a class Y, then either X is
created by Y, or the class that creates X is a subtype of Y. In the first case X is said to
be a direct instance-of Y while in the second it is said to be an indirect instance. Other
strategies for establishing conformance between objects exist, but the one described
above is the approach used in most statically typed object-oriented languages and the
UML.

The basic goal of the meta-modeling approach described in this paper is to extend
the conventional semantics of two-level object-oriented modeling to a multi-level
framework. We therefore assume a metamodeling approach which is faithful to these
two basic tenets of object-oriented development: namely that an object can have only
one classifier (i.e., participate in only one direct instance-of relationship) and that for
an object to be a member-of a class other than its classifier (i.e. an indirect instance-
of), this class must be a supertype of its classifier.

Instance-of Relationship between Levels

Once the nature of the instance-of relationship between two abstract entities has been
clarified, the next question is how it relates to model levels in the multi-level model
hierarchy. There are two basic schools of thought on this issue, which can be
characterized as "strict-" versus "loose metamodeling".

Strict Metamodeling

Strict metamodeling [3] is based on the tenet that if a model A is an instance-of
another model B then every element of A is an instance-of some element in B. In
other words, it interprets the instance-of relationship at the granularity of individual
model elements. This can be captured in the form of a class diagram1 as illustrated in
Fig. 2. The doctrine of strict metamodeling thus holds that the instance-of
relationship, and only the instance-of relationship, crosses metalevel boundaries, and
that every instance-of relationship must cross exactly one metalevel boundary to an
immediately adjacent level. This can be captured concisely by the following rule –

Strict Metamodeling: In an n-level modeling architecture, M0, M1 … Mn-1, every
element of an Mm-level model must be an instance-of exactly one element of an Mm+1-
level model, for all m < n-1, and any relationship other than the instance-of
relationship between two elements X and Y implies that level(X)=level(Y).

This definition deliberately rules out the top level in a hierarchy of levels, since a
common approach to terminate the hierarchy of metalevels is to model the top level
so that its elements can be viewed as instance-of elements in the same level. In terms
of the model-level "instance-of" relationship, this is described as a model being an
instance of itself.

/GVC/QFGN

/QFGN

/GVC/QFGN'NGOGPV

'NGOGPV

nKPUVCPEG1H� nKPUVCPEG1H�

EQPVCKPU���� ����

EQPVCKPU���� ����

Fig. 2. Strict Metamodeling

In essence, the strict metamodeling approach simply seeks to extend the time-
honored class/object distinction and instantiation semantics from classic object-
oriented development to all levels in a multi-level modeling architecture.

1 This diagrammatic representation of strict metamodeling is due to Cris Kobryn.

Loose Metamodeling

Loose metamodeling essentially encompasses all approaches which claim that one
model is an "instance of" another model, but where the strict requirements on the
instance-of relationship between individual model elements does not hold as defined
above. In practice, this means that the location of model elements is not determined
by their place in the instance-of hierarchy, but instead by other criteria. In other
words, in a loose metamodeling hierarchy one simple places model elements in the
model where one finds a need to mention them. Although this makes the initial
definition of metamodels much easier, it also gives rise to some subtle, but significant
problems.

The first problem is the blurring of the level-boundaries that arises when the
contents of models are chosen solely from a utilitarian perspective. An immediate
consequence of this blurring is that all kinds of relationships have to cross the
boundary between metalevels, including inheritance relationships, associations and
links. This in turn impacts upon the integrity of the model levels, which effectively
end up playing the role of packages that only serve to group elements into subgroups
of like purpose. This is not a bad thing in itself, since the value of grouping related
model elements within packages has long been established. However, wrapping up
what essentially amounts to an application of packages in all the baggage and
paraphernalia of "meta" modeling not only becomes confusing, but is also directly
misleading. Why characterize the relationship between model levels as the instance-of
relationship, when, if loose metamodeling is employed, the instance-of relationship is
not even the most common form of relationship between the levels?

A second and more significant problem is the need to deviate from the well-
established mechanism of instantiation in object-oriented approaches to make loose
metamodeling work. An example, which exemplifies this problem is the problem of
defining a prototypical concept (such as the prototypical class instance, Object)
which serves to convey upon entities the basic property of being an object. We call
this the "Prototypical Concept Problem". The approach used in the specification of the
UML (based on loose metamodeling) is to define the prototypical concept at the same
level as the class from which it is instantiated. The model elements Class and
Object both appear within the (M2) metamodel, and are related by an unnamed
association. But this requires that –

1. a modeling element at the M0 level must be an instance-of an M2 element.
2. a modeling element at the M0 level must be a direct instance-of two classes

(known as the "ambiguous classification" problem [4]).

This is clear in the work of Alhir [1], and [2] which have to resort to double, direct
instance-of relationships when attempting to fully characterize the relationships
between modeling elements within the context of loose metamodeling.

Profiles and Predefined Model Elements

Although the instance-of relationship, as elaborated above, is claimed to be the
criterion identifying the model levels in the UML standard, in fact a different unstated

principle is actually used. The implicit principle is that all "predefined" concepts in
the UML standard automatically reside at the meta (M2) level, and that everything
user-defined automatically resides at the model level (M1). Thus, something is chosen
to be at the metalevel because it is predefined, not because of its naturally location in
the instance-of hierarchy.
To see that this is the case it is necessary to examine the current profile mechanism in
more detail. In the current version of the UML [9] a profile is viewed as -

"…a package that constitutes the definition of a UML extension. It contains a
collection of Stereotypes, TagDefintions, Constraints, Comments and
standard ModelElements".

In other words, it represents a set of applications of the built-in UML extension
mechanisms which collectively provide a coherent set of new modeling concepts for a
specific domain or application. The semantics of a profile are therefore derived from
the semantics of the primitive extension mechanism upon which they are based—
namely stereotypes, tagged values and constraints. Of these, the stereotype concept is
the most fundamental in terms of creating new modeling concepts. Stereotypes were
introduced into the UML as a way for users to logically extend the metamodel
without tools having to physically change the metamodel. Thus, the stereotype
concept –

"…provides a way of branding (marking) elements so that they behave in
some respects as if they were instances of a new virtual metamodel
construct" [9].

This is reinforced by the idea that stereotypes behave as classifiers for stereotyped
elements.

"All model elements classified by one or more particular stereotypes receive
these values and constraints…" [9].

The tagged value and constraint mechanisms do not provide a way of introducing new
modeling concepts as such, but rather define additional properties of existing or newly
introduced constructs. Tagged values simply provide a shorthand way of defining new
meta-attributes and assigning values to them, while constraints simply define
additional rules by which model elements can be utilized. Thus, apart from actually
extending the metamodel itself, stereotypes represent the only mechanism for defining
new model elements, whether separately or as part of a profile. The current approach
used in the definition of the UML standard is to place the core (i.e. fundamental)
model elements in the meta (M2) level, and to add additional "predefined" profiles for
specialized domains. Note that the very concept of predefined stereotypes is
something of an oxymoron, since the original motivation for stereotypes was to
provide a simple user extension mechanism. By definition, predefined model
elements are not defined by individual users.
The currently predefined (or standard) profiles are the UML profile for Software
Development Processes and the UML profile for Business Modeling [9]. Although it
is nowhere explicitly stated in the UML standard, the message is that predefined
elements must reside logically at the meta (M2) level however they may be physically
represented. Fig. 1 is an adaptation of an OMG diagram [10] of the profile concept
which clearly indicates that all tailoring of the UML for specific applications is
expected to take place at the M2 level. This assumption is true also for the other
proposed UML extension mechanisms [5], [6].

The UML's preoccupation with meta-level (M2) modeling as the only way to
provide a predefined set of concepts upon which users can base their work is actually
somewhat surprising, since as mentioned previously object technology has a well
established and successful mechanism for providing predefined building blocks – the
inheritance mechanism. Object-oriented programming languages, such as Smalltalk,
Eiffel, and Java feature a whole hierarchy of predefined classes, rooted in a class
called Object from which all other classes either explicitly or implicitly inherit.
Note that this predefined "Object" class is not a meta concept residing at the M2 level,
but is purposely provided at the M1 level.

We believe that many of the current problems with the UML standard and the
proposed profiling mechanisms stem from a failure to recognize the importance of
M1-level inheritance2 as a mechanism for providing predefined modeling elements.
Before discussing how proper utilization of this mechanism can aid in a clean
definition of the profile mechanism, we first investigate, in the following section, the
difference between inheritance and instantiation.

Inheritance versus Instantiation

In order to compare instantiation to inheritance as a mechanism for applying
predefined modeling elements we use the well-known Observer pattern [7]. Since the
UML has no generally accepted notation to depict the class of an M1-level class (i.e.
the metaclass from which a class is instantiated), we use the stereotype notation, with
the understanding that this form is normally intended only for indicating instantiation
from user-defined modeling elements.

Predefining a Subject Role

The Observer pattern identifies a subject role whose task it is to notify a set of
attached observers whenever the subject’s state changes. The observers then in turn
query the subject about its state in order to synchronize their own state (e.g., a
rendered view of the subject’s contents). Fig. 3 shows that a subject role may attach
and detach multiple observers. Whenever the subject’s state changes it will call its
own notify method, causing an update message to be sent to each attached observer
instance. Fig. 3 also shows that the subject and observer roles are actually performed
by concrete subclasses. Concrete observers have an association to a concrete subject
so that they can exploit a particular interface to inquire about the subject’s state (e.g.,
getState()).

This pattern is common enough to be found within the predefined class libraries of
common object-oriented languages. For example, the Java package, java.util ,
defines two interfaces Observer and Observable with methods similar to the
corresponding classes in Fig. 3. The question we wish to address in this paper is how
can one best support the predefinition of these roles within the UML? As an example,

2 Inheritance at the M2 level also plays an important role in the extension mechanism, and will continue to

do so. It is the use of inheritance at the M1 level (or lack thereof) which is the issue here.

suppose that we wanted to apply the Observer pattern to the visualization of, say, a
data table object (e.g. for displaying multiple diagram types of the same data). As
explained in the previous sections, as well as using inheritance to derive a user
specific version of Subject from the predefined abstract definition, as in Fig. 3, it is
also possible to use instantiation.

observerState

update()

ConcreteObserver

update()

Observer
observes� *

subject

subjectState

getState()

ConcreteSubject

attach()
detach()
notify()

Subject

observers

Fig. 3. The structure of the Observer pattern

 Note that our goal here is not to necessarily present the best realization of the
Observer pattern or to attempt to find its optimal representation using the UML.
Instead, our goal is to compare the mechanisms of instantiation and inheritance for
deriving user-specific model elements from predefined ones.

Subject as a Predefined M2 Element
When using instantiation to derive a concrete subject class, the predefined version
must logically appear at the M2 level. Using stereotypes this can be achieved by
introducing a stereotype named "Subject" which is used to mark classes intended to
play the role of concrete subjects (see Fig. 4)3. However, since a stereotype can not
equip the class it is applied to with attributes, class Table has to explicitly define the
observers and the notify() method in addition to its internal state (cells)
and inquiry methods (getState()).

observers
cells

attach()
detach()
notify()
getState()

Table
« Subject »

Fig. 4. Subject modeled with a stereotype

3 Recall that a stereotype applied to a class at the M1 level defines a virtual metaclass at the M2 level.

The fact that concrete subjects such as Table have to explicitly define all their
attributes and operations is a fundamental consequence of the properties of
instantiation, not of the choice to support it by stereotypes. Any attributes or
operations defined for an M2-level class become slots and class level operations of its
instances, and therefore can have no effect on the objects created by a further
instantiation step.

Subject as a Predefined M1 Element
As illustrated in Fig. 5, the inheritance mechanism allows concrete subjects, such as
Table to be defined without having to explicitly list all their subject-related features.
These features, instead, are automatically attained by the normal semantics of object-
oriented inheritance. Consequently, this is the approach typically used in the
published definitions of patterns, such as those in [7].

observers

attach()
detach()
notify()

Subject

cells

Table

getState()

Fig. 5. Subject modeled with inheritance

If the subject role is modeled as a class at the M1 level, a Table class may inherit
from it, receiving all its features. Note that if the subject class only defines abstract
features then class Table only receives constraints (i.e., the obligation to implement
the abstract features). If, however, class Subject defines concrete attributes and
methods then class Table is able to fulfill a subject role by only providing a specific
getState() method. The rest is predefined by class Subject .

Comparing the Mechanisms

In both variants above (see Fig. 4 & Fig. 5), Table is classified as being a subject.
However, when we used stereotyping for classification (Fig. 4), the structure of table
instances cannot be influenced directly in the predefined description of Subject .
The most that could be specified here without resorting to the definition of constraints
(e.g., with OCL), is class related information such as "author" or "version"
information. Stereotyping class Table with Subject actually means that a virtual
metaclass Subject is derived from metaclass Class and then Table is
instantiated from it (see Fig. 6 (a)). Thus, any attributes specified in Subject
become class-level attributes of Table .

When inheritance is used, however, (i.e., class Subject resides at the M1 level,
see Fig. 6 (b)) one can straightforwardly predefine features, associations, invariants,
etc. in class Subject to be received by class Table . In effect, the "jump" across the
metalevel border has already been performed by class Subject , thus allowing it to
predefine properties for Table at the same modeling level. Interestingly, the two
approaches both use instantiation and inheritance (derivation) but in reverse order:

− the first derives Subject and then instantiates it to Table , whereas
− the second instantiates Subject and then derives Table from it.

Class

(a)

<< instanceOf >>

Subject

cells
observers

notifyAll()

Table
« Subject »

M2 Class

observers

notifyAll()

<< instanceOf >>

Subject

cells

Table

M2

(b)

Fig. 6. Instantiation versus Inheritance

The only apparent difference is that in the latter case a link between the classes
Table and Subject is established to denote inheritance. The fact that Table then
does not have to provide subject related features is just a consequence of this link.
This observation seems to suggest that predefining elements through stereotyping can,
to a certain extent, be used interchangeably with predefining element through M1-
level inheritance. However, clearly the practical effects of the two mechanisms are
different:

− instantiation does not affect the structure of the new M1 elements. It is, therefore,
optimally used to express non-code related information (e.g., project relevant
information) or to capture implementation details, which have no effect on the
stereotyped classes but on other classes (e.g., marker interfaces, such as
"Serializable " which are only used to signal this property to other classes
which actually implement serialization).

− inheritance may shape a new M1 element through predefined constraints,
interfaces, features, etc. It obviates the need for writing constraints within
stereotypes, which check that instantiated M1-level elements obey a certain
structure (e.g., provide a certain attribute). With inheritance this attribute (or an
association to another class, or corresponding methods) can be directly specified.

As a general observation, inheriting from M1-level elements seems to considerably
reduce the need for constraints. In the above example, the stereotype Subject is
likely to contain a constraint, checking that the stereotyped element actually features
an observers attribute. This property, in contrast, is guaranteed by construction
when inheritance is used for the classification of subjects.

A Unifying Notation

The different orders of instantiation and inheritance observed above suggests that the
name compartment of classes would benefit from a suitably defined notation that –

− highlights this phenomenon, and
− allows quick recognition of the situation at hand.
A notation commonly used to express subtyping is the "<" symbol. Hence with ":"

denoting instantiation as usual, one obtains:

Table : (Subject < Class) (Table stereotyped with Subject)
Table < (Subject : Class) (Table inheriting from Subject)

The first line reads "First metaclass Subject is derived from metaclass Class and
then class Table is instantiated from it", whereas the second line reads "First class
Subject is instantiated from class Class and then class Table is derived from it".
The difference between the two is captured graphically in Fig. 7. This uses a 3D
variant of the Venn diagram notation in which inheritance is represented in the form
of a sub-circle at the same level, while instantiation is represented in the form of a
raised sub-circle. Thus the vertical level of a circle represents its location in the
instantiation hierarchy, with the bottom level corresponding to M2, the second level to
M1 and the top level to M0.

5WDLGEV
/GVC�5W
DE

NCU
U
�

6CDNG

1DLGEV�

%NCUU
/GVC�%NCUU
�

5WDLGEV
5WRGTE
NCU

U�
6CDNG
%NCUU

�

%NCUU
/GVC�%NCUU
�

6CDNG
%NCUU
�

6CDNG

1DLGEV�

Fig. 7 Inheritance at the M2 level versus inheritance at the M1 level

When the stereotype syntax is used to denote instantiation and when stereotypes
prefix their elements the two lines from above become:

©Subject < Class ª Table abbreviates to: ©Subject ª Table
Table < ©Class ª Subject abbreviates to: Table < Subject

In this version, the guillemots nicely enclose all elements at the M2 level (i.e., the gray
parts in Fig. 6 and the dark-gray parts in Fig. 7).

In a further evolution one may write Subject > Table (instead of Table <
Subject) and for the sake of conformance with the existing stereotype notation

even write <Subject> Table . Note that the ">" operator between Subject and
Table still points in the right direction. Now denoting instantiation and inheritance
reads:

©<Class> Subject ª Table abbreviates to: ©Subject ª Table
<©Class ª Subject> Table abbreviates to: <Subject> Table

The respective distance of the new M1 element Table from Subject in terms of
metalevels, is nicely depicted by the guillemots (© ª, 2 levels) and the new subtype
notation (< > , 1 level). In particular, in the abbreviated forms on the right (which
could be used as usual within the name compartment of a class icon) it can readily be
seen that Table is an instance-of a metaclass in the first line above, and that it is
derived from a class in the second line above.

Clearly, there is already a graphical means to express that one element is derived
from another one (namely the generalization arrow). However, such redundancy
already has a precedent in the UML. For example, there are three ways to express
instantiation in the UML:

1. Two names separated by a colon.
2. A dependency arrow stereotyped with instance-of.
3. The stereotype notation.

Although these are strictly speaking redundant notations, each variant has an intended
application context where it communicates a particular variation of instantiation.
Likewise, we believe that the above proposed notation for deriving elements could
specifically communicate that inheritance is used to obtain predefined modeling
properties, whereas the graphical notation is typically employed to express a
generalization relationship between elements within a domain.

Strict Profiles

Having discussed the subtle differences between introducing new modeling concepts
at the M2 level (for instantiation) or at the M1 level (for specialization), we are now in
a position to describe how we believe UML profiles should be defined in the context
of a strict metamodeling framework. Fig. 8 gives a more faithful rendering (in
comparison to Fig. 1) of how profiles are located in the four-layer metamodeling
architecture. As a mechanism for predefining a modeling environment, we believe
that a profile in general should contain elements at both the M2 and M1 levels. In other
words, profiles should conceptually span modeling levels, i.e., not be confined to one
modeling level as is currently the case.

Although Fig. 8 does not give the organized impression of Fig. 1, it is simply the
result of taking the doctrine of strict metamodeling seriously, given that M1 elements
constitute an important part in a profile’s definition. Fig. 9 gives a more detailed view
of how the contents of profiles (depicted by the gray rectangle labeled L3) are
distributed over metalevels. Note that the boxes now depict individual classes while in
Fig. 8 they depict profiles. Another view, that more clearly emphasizes the levels in
the four-layer metamodeling architecture, is provided by Fig. 10. In this figure,
corresponding shades of gray belong to the same profile.

Predefined zz Meta

The basic goal of a profile is to define a set of modeling elements, which users in a
specific domain can apply to their own application. Thus, from the perspective of an
individual user of the UML, a profile defines the set of predefined modeling elements
that he/she can use as the basis of his/her own modeling work.

2EMHFWV �0��

0RGHOV �0��

0HWD0HWD0RGHO �0��

0HWDPRGHO �0��

80/ 27+(5 67$1'$5'6

('2&

0\3URILOH

5HDO7LPH 2/$3

&:0

02)

Fig. 8. Profiles containing M2 and M1 elements

This includes the so called "root profile" (labeled L2 in Fig. 9) which defines the
standard set of predefined elements that are part of the UML's core specification.

The key difference between the new way of defining profiles proposed in this
paper, and the approach described in the existing literature, is that a profile is no
longer restricted to just one level in the metamodeling hierarchy. On the contrary,
profiles (including the root profile) will typically consist of elements at both the M2
and M1 levels. In principle it is also possible for a profile to contain predefined
elements at the M0 level. For example, the "constant" objects in Smalltalk (e.g.
integers, characters, Boolean values), could be viewed as special predefined objects at
the M0 level. However, we do not expect this to be common in practical UML
modeling scenarios.

Rather than arbitrarily allocate model elements to levels based on whether or not
they are "predefined" or "user defined", the model elements in a profile are allocated
to metalevels according to their logical place in the "instance-of" hierarchy. This
reflects the fundamental observation that definition time (i.e. being predefined) and
level occupancy (i.e., being at a particular metalevel) are two completely different
concerns. In a nutshell: "predefined z meta".

As illustrated in Fig. 10, therefore, profiles generally cut across model levels in the
four-layer metamodeling architecture (one profile corresponds to one particular shade
of gray). For example, the root profile, which defines the UML core, consists of
regular metamodel elements at the M2 level, and several model elements at the M1
level. Typical users of the UML core will therefore add their own classes at the M1
level as instances of the predefined M2 elements, but also as specializations of the
predefined M1-level elements. Advanced users who wish to define a new profile, can
add new elements at both the M1 and M2 levels as specializations of existing modeling

elements at those levels. In this way, it is possible to build up a hierarchy of profiles,
each adding to the set of predefined modeling elements in previously defined profiles
by specialization at both the M2 and M1 levels.

2EMHFWV �0��

0RGHOV �0��

0HWD0HWD0RGHO �0��

0HWDPRGHO �0��

7KLQJ

%HKDYLRXU %

&

2EMHFW

&ODVV '

$

%XWWRQ &RQWDLQHU (

&RPSRQHQW

//
��

//
��

//
��

)

//
��

Fig. 9. Naming the modeling layers

The Prototypical Concept Problem

The model of profiles depicted in Fig. 9 illustrates how the "predefined z meta"
principle helps solve the prototypical concept problem outlined at the beginning of the
paper in a way that is consistent with the principles of strict metamodeling. Instead of
forcing prototypical concepts, such as the class Object and the class Link to reside
at the M2 level, these classes are instead allowed to reside at the M1 level, which
represents their natural location as far as the instance-of hierarchy is concerned.

Defining Object at the M1 level and defining all user M1-level classes as
specializations of Object , (either directly or indirectly by inheriting from an already
existing M1 element) removes the "ambiguous classification" problem mentioned in
section "Profiles and the Standard Modeling Architecture".

Note that any M0 entity is still a direct instance-of some M1 entity (which in turn is
an instance-of the M2 entity Class) and also an indirect instance-of Object . Since
every M1 entity (directly or indirectly) specializes Object , every M1 instance (i.e. an
M0-level entity) can be regarded as an (indirect) Object instance. In this way M0-
level entities receive all properties of being an object without requiring them to be a
direct instance-of two entities at the same time. In Fig. 10, therefore, the single M1-
level class within the UML core profile would correspond to the prototypical class
Object . Note that this is an established approach in many object-oriented language
models, such as Smalltalk, Eiffel and Java, where all classes have a common Object
class as their root ancestor.

2E
MHF
WV
�0
��

0R
GH
OV
�0
��

0H
WD
0H
WD0

RG
HO
�0
��

0H
WD
PR
GH
O �
0�
�

instanceOf

instanceOf

instanceOf

UM
L

Cor
e

RT P
ro

file

M
y

Pro
file EDOC Profile

M
y

Pro
file

RT P
ro

file EDOC Profile

UML Core

Fig. 10. Predefined entities at the M2 and M1 levels

This approach not only has the advantage that the class Object has its natural

place in the multi-level metamodeling-architecture, thus avoiding the problems that
arise when contravening the rules of strict metamodeling, but it also allows instances
of user defined classes to be automatically endowed with a predefined set of attributes
and methods.

Conclusion

With the envisaged shrinkage of the UML core, and the growing emphasis on user
tailorability, the quality and flexibility of the profile (i.e. extension) mechanism will
play an increasingly critical role in the UML's future success. This is reflected in the

level of interest in UML extensibility, and the growing set of proposals for the next
version of the UML extension mechanism. However, as pointed out in this paper, the
current set of proposals are based on an implicit, but fundamentally flawed,
assumption that tailoring of the UML is a matter only for the UML metamodel (M2)
level. This assumption is not only invalid, but as explained in the paper, is at odds
with long established principles of object modeling. Strict metamodeling offers the
best opportunity to place future versions of the language specification on a sound
footing and, hence, is envisaged in current plans for the UML's evolution [8].

The definition of a profiling mechanism that is consistent with the rules of strict
metamodeling (a so called strict profile) requires model elements to be allocated to
metalevels according to their natural location in the instance-of hierarchy rather than
whether or not they are predefined from the perspective of a user. The result is an
approach to UML extension, which uses regular M1-level inheritance as well as
instantiation to enable users to build upon a predefined set of building blocks. The
predefined building blocks, therefore, are distributed across multiple levels in the
metamodeling architecture, rather than being concentrated at one specific (M2) level
in the metamodeling hierarchy. Distributing predefining elements among multiple
levels in this way not only avoids the semantic distortions that are necessary to
support the "predefined { meta" principle implicit in current approaches, but also
facilitates a more natural allocation of properties to user classes and objects according
to the mechanisms discussed in this paper. By directly shaping the structure of M1
elements through the use of M1-level inheritance, the need to use a constraint
language in order to check a desired structure is avoided in many places.

The strict profiling principles outlined in this paper are essentially independent of
the notation used to define, instantiate, or specialize individual modeling elements.
For example the approaches described by Cook et al. [5] and D'Souza et al. [6] are
both compatible with—and could be use to embody—the notion of strict profiles.
Nevertheless, the practical application of the approach would greatly benefit from
appropriate notational support that applies the concepts of instantiation and
specialization in a level independent way. The UML currently supports two main
notations for instantiation, one between the M1 and M0 levels (regular class
instantiation) and one between the M2 and M1 levels (stereotyping). This paper
provides suggestions for unifying the two approaches together with a shorthand
notation for inheritance. When supported by an appropriate notation, we believe that
the notion of a strict profile outlined in this paper will help form the basis for the
infrastructure of the next version of the UML.

References

[1] S. S. Alhir: Extending the Unified Modeling Language. At: home.earthlink.net/~salhir,
1999

[2] J. Álvarez, A. Evans and P. Sammut: MML and the Metamodel Architecture, Workshop
on Transformations in UML (WTUML'01), associated with ETAPS'01, Genova, Italy
(2001)

[3] C. Atkinson: Supporting and Applying the UML Conceptual Framework, in: Proc. of
UML'98 (1998)

[4] C. Atkinson and T. Kühne: The Essence of Multi-Level Metamodeling, in: Proc. of
UML’01 (2001)

[5] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer and A. C. Wills: Defining UML
Family Members Using Prefaces, in: Proc. of TOOLS 32, (IEEE 1999)

[6] D. D'Souza, A. Sane and A. Birchenough: First Class Extensibility for UML – Packaging
of Profiles, Stereotypes, Patterns, in: Proc. of UML'99 (1999) 265–277

[7] E. Gamma, R. Helm, R. E. Johnson and J. Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software. (Addison-Wesley, 1994)

[8] C. Kobryn: UML 2001: A Standardization Odyssey. Communications of the ACM
(42):10 (1999) 29–37

[9] OMG: Unified Modeling Language Specification, Version 1.4. OMG document ad/01-
02-13), 2001

[10] OMG: White Paper on the profile mechanism, OMG Document ad/99-04-07, 1999

