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Abstract 
If the UML is to continue to meet the expectations of its ever-growing user 

community it is essential that it offer a simple and coherent mechanism for users to 
tailor the language to their specific needs. However, current UML extension 
approaches are not only unnecessarily limited in the capabilities that they provide, but 
also break some of the fundamental tenets of meta-modeling in a multi-level 
framework. In particular, they are all based on the assumption that instantiation, in 
one form or another, is the only mechanism by which end users can apply predefined 
model elements in their own applications. In this paper we identify the problems 
associated with this limitation and explain why inheritance is also important for 
allowing users to apply predefined model elements. We point out the fundamental 
differences and relationships between instantiation and inheritance for defining UML 
profiles and provide guidelines as to which mechanism should be used under which 
circumstances. We conclude by describing why both mechanisms should be utilized 
in the definition of UML profiles in the context of strict, linear metamodeling 
frameworks. 
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Introduction 

The success of the UML in a wide range of application domains has made it important 
to view the standard more as a family of languages, sharing a common core, than as a 
single language supporting minimal context-specific extensions. Current plans for the 
UML's evolution therefore envisage a significant shrinkage of the UML core, coupled 
with the definition of an enhanced extension mechanism to support the addition of 
domain and user specific modeling concepts [8]. Several different extension 
mechanisms have been proposed [5], [6], but the most prominent is the "profile 
mechanism" first described in a white paper for the OMG Analysis and Design 
Platform Task Force [10], and subsequently elaborated in later versions of the UML  
[9].  
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Like any description language, the purpose of the UML is to define a coherent and 
useful set of concepts that users can apply in their own work.  With object-oriented 
languages such as the UML that offer user-definable classes, there are two basic ways 
of achieving this. Concepts can either be defined within the core language along the 
lines of traditional non-object-oriented languages, or they can be defined as classes 
within the predefined "standard" libraries. Both approaches are put to full use in 
object-oriented languages such as Smalltalk and Java which have relatively small core 
language definitions with comparatively large supporting libraries. The only 
difference between classes in these standard libraries and classes added by the user is 
that they are predefined alongside the language definition as part of the technology 
standard. Thus we use the adjective "predefined" to refer to any concept defined 
within the language standard ([9] in the case of the UML) or in the standard working 
environment of a particular user. Note that the notion of something being 
"predefined" is relative to the user. For a UML user working for a specific company, 
the predefined modeling concepts are those in the UML standard plus those in any 
profile(s) whose use is mandated by the company (e.g. the company profile etc.). 

Although the currently proposed UML tailoring mechanisms differ in their details, 
they all take the view that the definition of predefined model elements is a matter for 
the "meta" level in the OMG's standard four-layer modeling architecture [9], and that 
users should apply the predefined model elements only by instantiating them. 

In this paper we argue that the assumption that predefined model elements should  
only reside at the meta level is flawed, and that inheritance at the regular "model" 
level is also an important mechanism for applying predefined model elements.  In 
other words, it must be possible to predefine model elements at the model level (for 
inheritance) as well as at the meta level (for instantiation).  Using an example, we 
demonstrate how, for specific purposes, inheritance enables the predefinition of 
modeling elements and/or their properties in a much more natural way than 
instantiating elements from the meta level (e.g. stereotyping). After establishing 
guidelines as to when to use which mechanism, we apply these principles to 
determine how a profile mechanism should fit into a strict metamodeling architecture, 
such as that envisaged for an improved UML infrastructure [8].  

Profiles and the Standard Modeling Architecture 

All UML modeling takes place within the context of the standard four-level OMG 
model architecture depicted in Fig. 1.  
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Fig. 1. The OMG view of profiles 

 
 

The top (M3) level in this scheme is the so called meta-metamodel, or meta-object 
facility (MOF), that defines the basic concepts from which specific metamodels are 
created at the meta (M2) level. This includes the UML metamodel and other data 
representation standards such as the CWM, which as illustrated in Fig. 1, are regarded 
as being instances-of the MOF, residing at the M2 level. Normal user models, created 
using the concepts of the UML or CWM, are regarded as residing at the M1 level, and 
the run-time data is regarded as residing at the M0 level. 

In defining the four level model architecture, the UML specification [9] states that 
"A model is an instance of a metamodel" and "A metamodel is an instance of a meta-
metamodel." This makes it clear that the basic relationship between the layers is 
intended to be the instance-of relationship. However, this definition leaves many 
questions unanswered, in particular – 

 
1. What is the precise nature of the instance-of relationship? 
2. What does the instance-of relationship between models mean in terms of the 

relationships between the model elements within the models? 
 

The answers to these questions have a critical bearing on the semantics and practical 
properties of any profile mechanism. We discuss these further in the following 
subsections. 

Instance-Of Relationship 

An instance-of relationship exists between two model elements when one element, X, 
is instantiated from another, Y. X is then said to be an instance-of Y. Establishing an 
instance-of relationship can be understood both in terms of set membership and as a 
mechanism for deriving one model element from another. 



 From a set theory perspective, the instance-of relationship could more precisely be 
referred to as “member-of”. If X is an instance of Y, the definition of Y, known as the 
intension of the concept, defines the properties which all instances (e.g., X) of the 
concept have to satisfy. The set of all instances (i.e. members) of a concept is known 
as its extension. 

As a mechanism for deriving one model element from another, instantiation can be 
understood as a creation activity, which uses a template (Y) to stamp out an instance 
(e.g., X). With this interpretation, the instance-of relationship could more precisely be 
referred to as “created-by”. When an element X is created from another Y, the 
attributes of Y become slots of X, with appropriate values, and the associations 
involving Y become links involving X. This means that the properties defined in a 
model element can only affect its instances, and not the instances of its instances. In 
other words, it can pass information across only one instantiation step. An alternative 
form of (deep) instantiation, in which properties can be propagated across more than 
one instance-of relationship, is described in [4]. However, in this paper we rely on the 
traditional shallow semantics of instantiation, which to date has been assumed for the 
UML metamodeling architecture. 

If the extensions of all classes in a system are mutually disjoint, these two 
interpretations of the instance-of relationship are equivalent, since then the only way 
for an element to be a member-of the extension of a class is to be created from it. 
However, when the extensions of classes are allowed to overlap, and subsets of their 
extensions are defined, the distinction between the two interpretations becomes more 
subtle. Subsets of extensions are created when subtyping (or specialization as it is 
known in the UML) is used. If Z is a subtype of Y, the extension of Z is a subset of 
the extension of class Y, and every member of Z is also a member of Y. This is 
related to the idea of polymorphism in object-oriented systems in which an instance-
of Z can be viewed as an instance-of Y, and in fact as an instance-of all Z’s 
superclasses. 

Two important conventions of contemporary object-development approaches 
govern the relationship between the two views of instantiation mentioned above in the 
presence of subtyping. The first is that an object can be created by one and only one 
class. In UML terms, an object can have only one classifier. In contrast, an object can 
be a member-of multiple classes in addition to the one from which it is created. The 
other convention is that if an object X is a member-of a class Y, then either X is 
created by Y, or the class that creates X is a subtype of Y. In the first case X is said to 
be a direct instance-of Y while in the second it is said to be an indirect instance. Other 
strategies for establishing conformance between objects exist, but the one described 
above is the approach used in most statically typed object-oriented languages and the 
UML. 

The basic goal of the meta-modeling approach described in this paper is to extend 
the conventional semantics of two-level object-oriented modeling to a multi-level 
framework. We therefore assume a metamodeling approach which is faithful to these 
two basic tenets of object-oriented development: namely that an object can have only 
one classifier (i.e., participate in only one direct instance-of relationship) and that for 
an object to be a member-of a class other than its classifier (i.e. an indirect instance-
of), this class must be a supertype of its classifier. 



Instance-of Relationship between Levels 

Once the nature of the instance-of relationship between two abstract entities has been 
clarified, the next question is how it relates to model levels in the multi-level model 
hierarchy. There are two basic schools of thought on this issue, which can be 
characterized as "strict-" versus "loose metamodeling". 

Strict Metamodeling  

Strict metamodeling [3] is based on the tenet that if a model A is an instance-of 
another model B then every element of A is an instance-of some element in B. In 
other words, it interprets the instance-of relationship at the granularity of individual 
model elements. This can be captured in the form of a class diagram1 as illustrated in 
Fig. 2. The doctrine of strict metamodeling thus holds that the instance-of 
relationship, and only the instance-of relationship, crosses metalevel boundaries, and 
that every instance-of relationship must cross exactly one metalevel boundary to an 
immediately adjacent level. This can be captured concisely by the following rule – 
 

Strict Metamodeling: In an n-level modeling architecture, M0, M1 … Mn-1, every 
element of an Mm-level model must be an instance-of exactly one element of an Mm+1-
level model, for all m < n-1, and any relationship other than the instance-of 
relationship between two elements X and Y implies that level(X)=level(Y). 
 

This definition deliberately rules out the top level in a hierarchy of levels, since a 
common approach to terminate the hierarchy of metalevels is to model the top level 
so that its elements can be viewed as instance-of elements in the same level. In terms 
of the model-level "instance-of" relationship, this is described as a model being an 
instance of itself. 
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Fig. 2. Strict Metamodeling 

 

In essence, the strict metamodeling approach simply seeks to extend the time-
honored class/object distinction and instantiation semantics  from classic object-
oriented development to all levels in a multi-level modeling architecture.  
                                                           
1  This diagrammatic representation of strict metamodeling is due to Cris Kobryn. 



Loose Metamodeling 

Loose metamodeling essentially encompasses all approaches which claim that one 
model is an "instance of" another model, but where the strict requirements on the 
instance-of relationship between individual model elements does not hold as defined 
above. In practice, this means that the location of model elements is not determined 
by their place in the instance-of hierarchy, but instead by other criteria. In other 
words, in a loose metamodeling hierarchy one simple places model elements in the 
model where one finds a need to mention them. Although this makes the initial 
definition of metamodels much easier, it also gives rise to some subtle, but significant 
problems. 

The first problem is the blurring of the level-boundaries that arises when the 
contents of models are chosen solely from a utilitarian perspective. An immediate 
consequence of this blurring is that all kinds of relationships have to cross the 
boundary between metalevels, including inheritance relationships, associations and 
links. This in turn impacts upon the integrity of the model levels, which effectively 
end up playing the role of packages that only serve to group elements into subgroups 
of like purpose. This is not a bad thing in itself, since the value of grouping related 
model elements within packages has long been established. However, wrapping up 
what essentially amounts to an application of packages in all the baggage and 
paraphernalia of "meta" modeling not only becomes confusing, but is also directly 
misleading. Why characterize the relationship between model levels as the instance-of 
relationship, when, if loose metamodeling is employed, the instance-of relationship is 
not even the most common form of relationship between the levels? 

A second and more significant problem is the need to deviate from the well-
established mechanism of instantiation in object-oriented approaches to make loose 
metamodeling work. An example, which exemplifies this problem is the problem of 
defining a prototypical concept (such as the prototypical class instance, Object ) 
which serves to convey upon entities the basic property of being an object. We call 
this the "Prototypical Concept Problem". The approach used in the specification of the 
UML (based on loose metamodeling) is to define the prototypical concept at the same 
level as the class from which it is instantiated. The model elements Class  and 
Object  both appear within the (M2) metamodel, and are related by an unnamed 
association. But this requires that – 

 
1. a modeling element at the M0 level must be an instance-of an M2 element. 
2. a modeling element at the M0 level must be a direct instance-of two classes 

(known as the "ambiguous classification" problem [4]). 
 
This is clear in the work of Alhir [1], and [2] which have to resort to double, direct 
instance-of relationships when attempting to fully characterize the relationships 
between modeling elements within the context of loose metamodeling. 

Profiles and Predefined Model Elements 

Although the instance-of relationship, as elaborated above, is claimed to be the 
criterion identifying the model levels in the UML standard, in fact a different unstated 



principle is actually used. The implicit principle is that all "predefined" concepts in 
the UML standard automatically reside at the meta (M2) level, and that everything 
user-defined automatically resides at the model level (M1). Thus, something is chosen 
to be at the metalevel because it is predefined, not because of its naturally location in 
the instance-of hierarchy.  
To see that this is the case it is necessary to examine the current profile mechanism in 
more detail. In the current version of the UML [9] a profile is viewed as - 

"…a package that constitutes the definition of a UML extension. It contains a 
collection of Stereotypes, TagDefintions, Constraints, Comments and 
standard ModelElements".  

In other words, it represents a set of applications of the built-in UML extension 
mechanisms which collectively provide a coherent set of new modeling concepts for a 
specific domain or application. The semantics of a profile are therefore derived from 
the semantics of the primitive extension mechanism upon which they are based—
namely stereotypes, tagged values and constraints. Of these, the stereotype concept is 
the most fundamental in terms of creating new modeling concepts. Stereotypes were 
introduced into the UML as a way for users to logically extend the metamodel 
without tools having to physically change the metamodel. Thus, the stereotype 
concept –   

"…provides a way of branding (marking) elements so that they behave in 
some respects as if they were instances of a new virtual metamodel 
construct" [9].  

This is reinforced by the idea that stereotypes behave as classifiers for stereotyped 
elements.   

"All model elements classified by one or more particular stereotypes receive 
these values and constraints…" [9]. 

 
The tagged value and constraint mechanisms do not provide a way of introducing new 
modeling concepts as such, but rather define additional properties of existing or newly 
introduced constructs. Tagged values simply provide a shorthand way of defining new 
meta-attributes and assigning values to them, while constraints simply define 
additional rules by which model elements can be utilized. Thus, apart from actually 
extending the metamodel itself, stereotypes represent the only mechanism for defining 
new model elements, whether separately or as part of a profile. The current approach 
used in the definition of the UML standard is to place the core (i.e. fundamental) 
model elements in the meta (M2) level, and to add additional "predefined" profiles for 
specialized domains. Note that the very concept of predefined stereotypes is 
something of an oxymoron, since the original motivation for stereotypes was to 
provide a simple user extension mechanism. By definition, predefined model 
elements are not defined by individual users.  
The currently predefined (or standard) profiles are the UML profile for Software 
Development Processes and the UML profile for Business Modeling [9]. Although it 
is nowhere explicitly stated in the UML standard, the message is that predefined 
elements must reside logically at the meta (M2) level however they may be physically 
represented. Fig. 1 is an adaptation of an OMG diagram [10] of the profile concept 
which clearly indicates that all tailoring of the UML for specific applications is 
expected to take place at the M2 level. This assumption is true also for the other 
proposed UML extension mechanisms [5], [6]. 



The UML's preoccupation with meta-level (M2) modeling as the only way to 
provide a predefined set of concepts upon which users can base their work is actually 
somewhat surprising, since as mentioned previously object technology has a well 
established and successful mechanism for providing predefined building blocks – the 
inheritance mechanism. Object-oriented programming languages, such as Smalltalk, 
Eiffel, and Java feature a whole hierarchy of predefined classes, rooted in a class 
called Object  from which all other classes either explicitly or implicitly inherit. 
Note that this predefined "Object" class is not a meta concept residing at the M2 level, 
but is purposely provided at the M1 level. 

We believe that many of the current problems with the UML standard and the 
proposed profiling mechanisms stem from a failure to recognize the importance of 
M1-level inheritance2 as a mechanism for providing predefined modeling elements. 
Before discussing how proper utilization of this mechanism can aid in a clean 
definition of the profile mechanism, we first investigate, in the following section, the 
difference between inheritance and instantiation.  

 

Inheritance versus Instantiation 

In order to compare instantiation to inheritance as a mechanism for applying 
predefined modeling elements we use the well-known Observer pattern [7]. Since the 
UML has no generally accepted notation to depict the class of an M1-level class (i.e. 
the metaclass from which a class is instantiated), we use the stereotype notation, with 
the understanding that this form is normally intended only for indicating instantiation 
from user-defined modeling elements.  

Predefining a Subject Role 

The Observer pattern identifies a subject role whose task it is to notify a set of 
attached observers whenever the subject’s state changes. The observers then in turn 
query the subject about its state in order to synchronize their own state (e.g., a 
rendered view of the subject’s contents). Fig. 3 shows that a subject role may attach 
and detach multiple observers. Whenever the subject’s state changes it will call its 
own notify method, causing an update message to be sent to each attached observer 
instance. Fig. 3 also shows that the subject and observer roles are actually performed 
by concrete subclasses. Concrete observers have an association to a concrete subject 
so that they can exploit a particular interface to inquire about the subject’s state (e.g., 
getState() ). 

This pattern is common enough to be found within the predefined class libraries of 
common object-oriented languages. For example, the Java package, java.util , 
defines two interfaces Observer  and Observable  with methods similar to the 
corresponding classes in Fig. 3. The question we wish to address in this paper is how 
can one best support the predefinition of these roles within the UML? As an example, 

                                                           
2  Inheritance at the M2 level also plays an important role in the extension mechanism, and will continue to 

do so. It is the use of inheritance at the M1 level (or lack thereof) which is the issue here. 



suppose that we wanted to apply the Observer pattern to the visualization of, say, a 
data table object (e.g. for displaying multiple diagram types of the same data). As 
explained in the previous sections, as well as using inheritance to derive a user 
specific version of Subject  from the predefined abstract definition, as in Fig. 3, it is 
also possible to use instantiation.  

 

observerState 

update() 

ConcreteObserver

update() 

Observer
observes� *

subject

subjectState 

getState() 

ConcreteSubject

attach()
detach()
notify()

Subject

observers 

 

Fig. 3. The structure of the Observer pattern 

 Note that our goal here is not to necessarily present the best realization of the 
Observer pattern or to attempt to find its optimal representation using the UML. 
Instead, our goal is to compare the mechanisms of instantiation and inheritance for 
deriving user-specific model elements from  predefined ones. 

Subject as a Predefined M2 Element 
When using instantiation to derive a concrete subject class, the predefined version 
must logically appear at the M2 level. Using stereotypes this can be achieved by 
introducing a stereotype named "Subject" which is used to mark classes intended to 
play the role of concrete subjects (see Fig. 4)3. However, since a stereotype can not 
equip the class it is applied to with attributes, class Table  has to explicitly define the 
observers  and the notify()  method in addition to its internal state (cells ) 
and inquiry methods (getState() ).  

 

observers
cells

attach()
detach()
notify()
getState() 

Table
« Subject »

 

Fig. 4. Subject modeled with a stereotype 

                                                           
3 Recall that a stereotype applied to a class at the M1 level defines a virtual metaclass at the M2 level. 



The fact that concrete subjects such as Table  have to explicitly define all their 
attributes and operations is a fundamental consequence of the properties of 
instantiation, not of the choice to support it by stereotypes. Any attributes or 
operations defined for an M2-level class become slots and class level operations of its 
instances, and therefore can have no effect on the objects created by a further 
instantiation step.  

Subject as a Predefined M1 Element 
As illustrated in Fig. 5, the inheritance mechanism allows concrete subjects, such as 
Table  to be defined without having to explicitly list all their subject-related features. 
These features, instead, are automatically attained by the normal semantics of object-
oriented inheritance. Consequently, this is the approach typically used in the 
published definitions of patterns, such as those in [7]. 

 

observers 

attach()
detach()
notify() 

Subject

cells

Table

getState()

 

Fig. 5. Subject modeled with inheritance 

If the subject role is modeled as a class at the M1 level, a Table  class may inherit 
from it, receiving all its features. Note that if the subject class only defines abstract 
features then class Table  only receives constraints (i.e., the obligation to implement 
the abstract features). If, however, class Subject  defines concrete attributes and 
methods then class Table  is able to fulfill a subject role by only providing a specific 
getState()  method. The rest is predefined by class Subject . 

Comparing the Mechanisms 

In both variants above (see Fig. 4 & Fig. 5), Table  is classified as being a subject. 
However, when we used stereotyping for classification (Fig. 4), the structure of table 
instances cannot be influenced directly in the predefined description of Subject . 
The most that could be specified here without resorting to the definition of constraints 
(e.g., with OCL), is class related information such as "author" or "version" 
information. Stereotyping class Table  with Subject  actually means that a virtual 
metaclass Subject  is derived from metaclass Class  and then Table  is 
instantiated from it (see Fig. 6 (a)). Thus, any attributes specified in Subject  
become class-level attributes of Table . 



When inheritance is used, however, (i.e., class Subject  resides at the M1 level, 
see Fig. 6 (b)) one can straightforwardly predefine features, associations, invariants, 
etc. in class Subject  to be received by class Table . In effect, the "jump" across the 
metalevel border has already been performed by class Subject , thus allowing it to 
predefine properties for Table  at the same modeling level. Interestingly, the two 
approaches both use instantiation and inheritance (derivation) but in reverse order: 

 
−  the first derives Subject  and then instantiates it to Table , whereas 
−  the second instantiates Subject  and then derives Table  from it. 
 

Class

(a)

<< instanceOf >>

Subject

cells
observers 

notifyAll() 

Table
« Subject »

M2 Class

observers 

notifyAll() 

<< instanceOf >>

Subject

cells

Table

M2

(b)

 

Fig. 6. Instantiation versus Inheritance 

The only apparent difference is that in the latter case a link between the classes 
Table  and Subject  is established to denote inheritance. The fact that Table  then 
does not have to provide subject related features is just a consequence of this link. 
This observation seems to suggest that predefining elements through stereotyping can, 
to a certain extent, be used interchangeably with predefining element through M1-
level inheritance. However, clearly the practical effects of the two mechanisms are 
different: 

− instantiation does not affect the structure of the new M1 elements. It is, therefore, 
optimally used to express non-code related information (e.g., project relevant 
information) or to capture implementation details, which have no effect on the 
stereotyped classes but on other classes (e.g., marker interfaces, such as 
"Serializable " which are only used to signal this property to other classes 
which actually implement serialization). 

− inheritance may shape a new M1 element through predefined constraints, 
interfaces, features, etc. It obviates the need for writing constraints within 
stereotypes, which check that instantiated M1-level elements obey a certain 
structure (e.g., provide a certain attribute). With inheritance this attribute (or an 
association to another class, or corresponding methods) can be directly specified. 



As a general observation, inheriting from M1-level elements seems to considerably 
reduce the need for constraints. In the above example, the stereotype Subject  is 
likely to contain a constraint, checking that the stereotyped element actually features 
an observers  attribute. This property, in contrast, is guaranteed by construction 
when inheritance is used for the classification of subjects.  

A Unifying Notation 

The different orders of instantiation and inheritance observed above suggests that the 
name compartment of classes would benefit from a suitably defined notation that – 

− highlights this phenomenon, and 
− allows quick recognition of the situation at hand. 
A notation commonly used to express subtyping is the "<" symbol. Hence with ":" 

denoting instantiation as usual, one obtains: 

Table  : (Subject < Class) (Table stereotyped with Subject)  
Table  < (Subject : Class) (Table inheriting from Subject)  

The first line reads "First metaclass Subject  is derived from metaclass Class  and 
then class Table  is instantiated from it", whereas the second line reads "First class 
Subject  is instantiated from class Class  and then class Table  is derived from it". 
The difference between the two is captured graphically in Fig. 7. This uses a 3D 
variant of the Venn diagram notation in which inheritance is represented in the form 
of a sub-circle at the same level, while instantiation is represented in the form of a 
raised sub-circle. Thus the vertical level of a circle represents its location in the 
instantiation hierarchy, with the bottom level corresponding to M2, the second level to 
M1 and the top level to M0. 
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Fig. 7 Inheritance at the M2 level versus inheritance at the M1 level 

 
When the stereotype syntax is used to denote instantiation and when stereotypes 
prefix their elements the two lines from above become: 

©Subject < Class ª Table    abbreviates to:  ©Subject ª Table  
Table < ©Class ª Subject   abbreviates to:  Table  < Subject 

In this version, the guillemots nicely enclose all elements at the M2 level (i.e., the gray 
parts in Fig. 6 and the dark-gray parts in Fig. 7).  

In a further evolution one may write Subject > Table  (instead of Table < 
Subject ) and for the sake of conformance with the existing stereotype notation 



even write <Subject> Table . Note that the ">" operator between Subject  and 
Table  still points in the right direction. Now denoting instantiation and inheritance 
reads: 

©<Class> Subject ª Table    abbreviates to:  ©Subject ª Table  
<©Class ª Subject> Table    abbreviates to:  <Subject> Table   

The respective distance of the new M1 element Table  from Subject  in terms of 
metalevels, is nicely depicted by the guillemots (© ª, 2 levels) and the new subtype 
notation (< > , 1 level). In particular, in the abbreviated forms on the right (which 
could be used as usual within the name compartment of a class icon) it can readily be 
seen that Table  is an instance-of a metaclass in the first line above, and that it is 
derived from a class in the second line above. 

Clearly, there is already a graphical means to express that one element is derived 
from another one (namely the generalization arrow). However, such redundancy 
already has a precedent in the UML. For example, there are three ways to express 
instantiation in the UML: 

1. Two names separated by a colon. 
2. A dependency arrow stereotyped with instance-of. 
3. The stereotype notation. 

Although these are strictly speaking redundant notations, each variant has an intended 
application context where it communicates a particular variation of instantiation. 
Likewise, we believe that the above proposed notation for deriving elements could 
specifically communicate that inheritance is used to obtain predefined modeling 
properties, whereas the graphical notation is typically employed to express a 
generalization relationship between elements within a domain. 

Strict Profiles 

Having discussed the subtle differences between introducing new modeling concepts 
at the M2 level (for instantiation) or at the M1 level (for specialization), we are now in 
a position to describe how we believe UML profiles should be defined in the context 
of a strict metamodeling framework. Fig. 8 gives a more faithful rendering (in 
comparison to Fig. 1) of how profiles are located in the four-layer metamodeling 
architecture. As a mechanism for predefining a modeling environment, we believe 
that a profile in general should contain elements at both the M2 and M1 levels. In other 
words, profiles should conceptually span modeling levels, i.e., not be confined to one 
modeling level as is currently the case. 

Although Fig. 8 does not give the organized impression of Fig. 1, it is simply the 
result of taking the doctrine of strict metamodeling seriously, given that M1 elements 
constitute an important part in a profile’s definition. Fig. 9 gives a more detailed view 
of how the contents of profiles (depicted by the gray rectangle labeled L3) are 
distributed over metalevels. Note that the boxes now depict individual classes while in 
Fig. 8 they depict profiles. Another view, that more clearly emphasizes the levels in 
the four-layer metamodeling architecture, is provided by Fig. 10. In this figure, 
corresponding shades of gray belong to the same profile. 



Predefined zz Meta 

The basic goal of a profile is to define a set of modeling elements, which users in a 
specific domain can apply to their own application. Thus, from the perspective of an 
individual user of the UML, a profile defines the set of predefined modeling elements 
that he/she can use as the basis of his/her own modeling work.   

2EMHFWV �0��

0RGHOV �0��

0HWD0HWD0RGHO �0��

0HWDPRGHO �0��

80/ 27+(5 67$1'$5'6

('2&

0\3URILOH

5HDO7LPH 2/$3

&:0

02)

 

Fig. 8. Profiles containing M2 and M1 elements 

This includes the so called "root profile" (labeled L2 in Fig. 9) which defines the 
standard set of predefined elements that are part of the UML's core specification. 

The key difference between the new way of defining profiles proposed in this 
paper, and the approach described in the existing literature, is that a profile is no 
longer restricted to just one level in the metamodeling hierarchy. On the contrary, 
profiles (including the root profile) will typically consist of elements at both the M2 
and M1 levels. In principle it is also possible for a profile to contain predefined 
elements at the M0 level. For example, the "constant" objects in Smalltalk (e.g. 
integers, characters, Boolean values), could be viewed as special predefined objects at 
the M0 level. However, we do not expect this to be common in practical UML 
modeling scenarios.  

Rather than arbitrarily allocate model elements to levels based on whether or not 
they are "predefined" or "user defined", the model elements in a profile are allocated 
to metalevels according to their logical place in the "instance-of" hierarchy. This 
reflects the fundamental observation that definition time (i.e. being predefined) and 
level occupancy (i.e., being at a particular metalevel) are two completely different 
concerns. In a nutshell: "predefined z meta". 

As illustrated in Fig. 10, therefore, profiles generally cut across model levels in the 
four-layer metamodeling architecture (one profile corresponds to one particular shade 
of gray). For example, the root profile, which defines the UML core, consists of 
regular metamodel elements at the M2 level, and several model elements at the M1 
level. Typical users of the UML core will therefore add their own classes at the M1 
level as instances of the predefined M2 elements, but also as specializations of the 
predefined M1-level elements. Advanced users who wish to define a new profile, can 
add new elements at both the M1 and M2 levels as specializations of existing modeling 



elements at those levels. In this way, it is possible to build up a hierarchy of profiles, 
each adding to the set of predefined modeling elements in previously defined profiles 
by specialization at both the M2 and M1 levels. 
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Fig. 9. Naming the modeling layers 

The Prototypical Concept Problem 

The model of profiles depicted in Fig. 9 illustrates how the "predefined z meta" 
principle helps solve the prototypical concept problem outlined at the beginning of the 
paper in a way that is consistent with the principles of strict metamodeling. Instead of 
forcing prototypical concepts, such as the class Object  and the class Link  to reside 
at the M2 level, these classes are instead allowed to reside at the M1 level, which 
represents their natural location as far as the instance-of hierarchy is concerned. 

Defining Object  at the M1 level and defining all user M1-level classes as 
specializations of Object , (either directly or indirectly by inheriting from an already 
existing M1 element) removes the "ambiguous classification" problem mentioned in 
section "Profiles and the Standard Modeling Architecture".  

Note that any M0 entity is still a direct instance-of some M1 entity (which in turn is 
an instance-of the M2 entity Class ) and also an indirect instance-of Object . Since 
every M1 entity (directly or indirectly) specializes Object , every M1 instance (i.e. an 
M0-level entity) can be regarded as an (indirect) Object  instance. In this way M0-
level entities receive all properties of being an object without requiring them to be a 
direct instance-of two entities at the same time. In Fig. 10, therefore, the single M1-
level class within the UML core profile would correspond to the prototypical class 
Object . Note that this is an established approach in many object-oriented language 
models, such as Smalltalk, Eiffel and Java, where all classes have a common Object  
class as their root ancestor. 
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Fig. 10. Predefined entities at the M2 and M1 levels 

 
This approach not only has the advantage that the class Object  has its natural 

place in the multi-level metamodeling-architecture, thus avoiding the problems that 
arise when contravening the rules of strict metamodeling, but it also allows instances 
of user defined classes to be automatically endowed with a predefined set of attributes 
and methods.  

Conclusion 

With the envisaged shrinkage of the UML core, and the growing emphasis on user 
tailorability, the quality and flexibility of the profile (i.e. extension) mechanism will 
play an increasingly critical role in the UML's future success. This is reflected in the 



level of interest in UML extensibility, and the growing set of proposals for the next 
version of the UML extension mechanism. However, as pointed out in this paper, the 
current set of proposals are based on an implicit, but fundamentally flawed, 
assumption that tailoring of the UML is a matter only for the UML metamodel (M2) 
level. This assumption is not only invalid, but as explained in the paper, is at odds 
with long established principles of object modeling. Strict metamodeling offers the 
best opportunity to place future versions of the language specification on a sound 
footing and, hence, is envisaged in current plans for the UML's evolution [8]. 

The definition of a profiling mechanism that is consistent with the rules of strict 
metamodeling (a so called strict profile) requires model elements to be allocated to 
metalevels according to their natural location in the instance-of hierarchy rather than 
whether or not they are predefined from the perspective of a user. The result is an 
approach to UML extension, which uses regular M1-level inheritance as well as 
instantiation to enable users to build upon a predefined set of building blocks. The 
predefined building blocks, therefore, are distributed across multiple levels in the 
metamodeling architecture, rather than being concentrated at one specific (M2) level 
in the metamodeling hierarchy. Distributing predefining elements among multiple 
levels in this way not only avoids the semantic distortions that are necessary to 
support the "predefined { meta" principle implicit in current approaches, but also 
facilitates a more natural allocation of properties to user classes and objects according 
to the mechanisms discussed in this paper. By directly shaping the structure of M1 
elements through the use of M1-level inheritance, the need to use a constraint 
language in order to check a desired structure is avoided in many places. 

The strict profiling principles outlined in this paper are essentially independent of 
the notation used to define, instantiate, or specialize individual modeling elements. 
For example the approaches described by Cook et al. [5] and D'Souza et al. [6] are 
both compatible with—and could be use to embody—the notion of strict profiles. 
Nevertheless, the practical application of the approach would greatly benefit from 
appropriate notational support that applies the concepts of instantiation and 
specialization in a level independent way. The UML currently supports two main 
notations for instantiation, one between the M1 and M0 levels (regular class 
instantiation) and one between the M2 and M1 levels (stereotyping). This paper 
provides suggestions for unifying the two approaches together with a shorthand 
notation for inheritance. When supported by an appropriate notation, we believe that 
the notion of a strict profile outlined in this paper will help form the basis for the 
infrastructure of the next version of the UML. 
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