
1

Meta-level Independent Modelling

Colin Atkinson and Thomas Kühne
University of Kaiserslautern

67653 Kaiserslautern, Germany
{atkinson, kuehne}@informatik.uni-kl.de

ABSTRACT
The popularity of the UML and the recent focus on
its extension mechanisms has raised the general
awareness of the value and importance of
metamodelling. However, the effectiveness of
metamodelling with the UML is being hindered by
the lack of suitable notational support. In particular
the stereotype mechanism is not consistently
applied to the UML’s four-layer meta-architecture.
The result is that different notations are used for
the same concept at different meta-levels. In this
paper we explain the motivation for a uniform,
level-independent notation that supports the same
concept in the same way regardless of its location
in the meta-architecture, and then go on to suggest
some of the principles upon which such a notation
could be based.

1 INTRODUCTION
The widespread interest in the UML has increased
awareness in the user community of the value and
importance of metamodelling. Whereas previously
metamodelling was viewed as the exclusive
concern of tool builders and language designers,
with the advent of the UML it has now entered the
realm of every day modelling activities. In
particular, tailoring (i.e., extending) the UML to
one’s special needs is expected to become a
frequent activity. Even today, without support from
a specialised profile mechanism, users can extend
the predefined UML metamodel either indirectly by
using stereotypes or directly by adding metaclasses.

Unfortunately, however, much of the potential
power of metamodelling is currently lost because of
the lack of a proper notation for working within a
multi-level environment. Although the semantics of
the UML assumes that users will generally need to
influence at least three meta-levels (M0, M1 and
M2), the UML notation assumes that they will only
work at two (M0, M1). As a consequence, not only
is the UML's notational support for metamodelling
non-uniform and overly complex, but the semantics

of the language is distorted and overloaded with
superfluous concepts.

The reason for this imbalance is that until recently
object-modelling notations were entirely focused on
modelling at two levels. The third level only
became relevant to users once they were given the
opportunity to extend the modelling notation.
Instead of further over-complicated extension
mechanisms, what is required at this stage in the
UML's evolution is the consolidation of the already
available modelling mechanisms and the provision
of a uniform, level-independent notation for their
application.

In this paper we address the issues involved in
meeting this challenge. The next section briefly
describes the primary semantic and notational
distortions that currently limit the effectiveness of
the UML for metamodelling. The following section
then goes on to suggest some notational
conventions by which these problems could be
rectified.

2 STEREOTYPING VERSUS
INSTANTIATION

One of the most fundamental principles in object
modelling is the instantiation1 of a class to create an
object. The UML notation for describing this
situation is illustrated in Figure 1 below.

anAttributeInstance = Value

anObject : aClass

aMethodInstance()

anAttributeType

aClass

aMethodType()

ObjectClass

Figure 1: UML Instantiation Notation

1 For the purposes of this paper we include the
assignment of attribute values to attribute instances
within the general term instantiation.

2

This notation has become the established way of
modelling instantiation between the traditional
model (M1) and data (M0) levels. Thus, aClass
would reside at the M1 level and anObject at the
M0 level. In the context of a multi-level model
engineering paradigm it would seem fairly
straightforward to generalise this notation to
capture the instantiation concept between higher
modelling levels, but unfortunately this is not the
approach taken in the current version of the UML.
Instead, the UML aims to provide a "shorthand"
way of describing the instantiation of user-
introduced modelling elements by introducing an
additional set of semantic and notational concepts.
The preferred UML representation of instantiation
between the M2 and M1 level is illustrated in
Figure 2.

anObject

anAttributeType

aMethodType()

{anAttributeInstance = Value}

«aClass»

Figure 2: Stereotypes and Tagged Values

The motivation for this notation is to be able to
describe instantiation (including the assignment of
attribute values) without the need to model the class
from which the instance is created, thereby
avoiding direct extension of the M2 level. The class
from which an instance is instantiated is
represented by a "stereotype" (aClass in Figure
2), rather than by the ":" notation used at the M0
level. This class is meant to be a virtual metaclass
from which anObject is instantiated [1]. The
shorthand notation also allows attribute instances to
be represented as tagged values
(anAttributeInstance in Figure 2), but does
not support the representation of method instances.

Although this method of representing instantiation
may be "shorter" purely in terms of model volume
(i.e. the amount of textual and graphical space
needed to express the concept), it certainly is not
"shorter" in terms of notational and semantic
complexity. To understand instantiation at the M1
level, users have to understand the additional
notational and semantic baggage associated with
the stereotype concept. In effect, therefore, the
stereotype mechanism represents an alternative way
of expressing the instantiation relationship without
offering any additional modelling power. The
problem is amplified by the fact that the current
UML instantiation concepts are not at all clearly

explained and well understood. For instance, trying
to pin down the exact properties of stereotypes and
tagged values within a group of UML "experts",
usually starts a long and controversial discussion.

The main problem, however, is not the nature of an
individual instantiation-representation mechanism
per se, but the fact that different mechanisms are
used at different levels. Such redundancy would be
justified if there were clear rules as to when one
representation is applicable and why, but the variety
of vaguely defined variants only creates confusion
and hinders the application of a single mechanism
uniformly across all levels. The fundamental
requirement, therefore, is to remove the current
ambiguities, inconsistencies and redundancies in
the UML's approach to instantiation, and replace
them with a uniform, level-independent approach.

3 LEVEL INDEPENDENT MODELLING
It is perfectly possible to model instantiation
between arbitrary adjacent metalevels by extending
the established notation for instantiation between
the M1 and M0 levels. However, this can only be
achieved in a clean way by appealing to two
fundamental properties of a multi-level model-
engineering environment.

3.1 Strict Metamodelling
The first important property relates to the definition
of the levels themselves. The underlying
assumption behind multi-level model engineering is
that each level is an instance of the level above
(except for the top level). Unfortunately, however,
many modelling approaches, including the UML,
apply this in a very loose way. They accept the
general instance-of relationship between models,
but do not apply it rigorously to all elements of the
models. Thus, for example the UML metamodel
mixes instances and the types from which they are
created at the same level (e.g. class and object,
association and link etc.)

Providing a clean notation is impossible when the
concepts of metamodelling are not cleanly applied.
Therefore, we assume a multi-level framework
based on the doctrine of strict metamodelling [2] -

Every element of an Mn level model is an
instance_of exactly one element of an Mn+1

level model

- with the understanding that some kind of "trick" is
needed at the top level (e.g., entities at the top level
are instances of other entities at the top level).

3.2 Clabjects
An importance consequence of metamodelling is
that every instantiatable model element has both an
instance facet and a type facet, both of which are
equally valid. In other words every instantiatable

3

element is both a class (i.e. an instantiatable type)
and an object (i.e. an instantiated instance). Non-
instantiatable elements, such as those at the M0
level, by definition do not have the type facet.

One way of reconciling these two facets
notationally is offered by the 3D visualisation of a
clabject as a cube (see Figure 3).

Type (class) view Instance (object) view

Figure 3: 3D visualisation of a clabject

The right hand face of this cube represents the
instance (or object) facet of the model element, and
contains the attribute instances and method
instances derived from the type from which it was
instantiated. The left-hand face represents the type
view of the model element, and contains the
attributes and method types which its instances will
receive.

3.3 Uniform Instantiation Notation
The problem with the current UML notation is that
it is not possible to represent both facets of a
clabject in one symbol. By “flattening” this cube
into two dimensions we obtain a representation of
model elements capable of capturing both facets of
an instantiatable element. The basic convention is
that “instance” related features are indented with
respect to the “type” related features to convey the
idea that they are on the right hand face of the cube
(see Figure 4).

This unified notation uses the well established
instantiation symbol to indicate the type from
which a clabject is instantiated. This is augmented
by optional superscripts following the clabject
names to identify their level. Assuming a strict
metamodelling framework, the following identity
must always hold between these superscripts,
except at the top level.

X = Y - 1

The final notation suggestion, not illustrated in
Figure 4, is to use the convention of underlining
names to differentiate instantiatable clabjects from
non-instantiatable objects, the latter being the
entities underlined.

3.4 The Good, the Bad and the Ugly
With the availability of a uniform notation of the
kind described in the previous section, two of the
three current UML lightweight extension
mechanisms would become superfluous.
Constraints (the good) would still be extremely
useful, since the application of additional
restrictions to modelling concepts is still going to
be valuable regardless of the manner in which they
are defined. However, stereotypes (the bad), and
tagged values (the ugly) would no longer add any
expressive power beyond the regular meta-
instantiation mechanism. Stereotypes would just
provide an alternative (although more complicated)
way of defining the type from which a model
element has been instantiated, while tagged values
would just provide an alternative means of
representing attribute values. Using the clabject
notation, the corresponding tags would simply have
to be defined as attributes in the corresponding
metaclass.

The adoption of a uniform mechanism of the form
defined above would therefore have no negative
consequences, since the effects of tagged values
and stereotyping would be still available, but would
lead to a significant improvement in the clarity and
simplicity of the UML.

anAttributeInstance = Value

aClabject : aMetaClabject

aMethodInstance()

anAttributeInstance = Value

aClabjectX : aMetaClabjectY

aMethodType ()

anAttributeType

aMethodInstance ()

+ =

UML1.1 Object ViewUML1.1 Type View Generalized UML

anAttributeType

aClabject

aMethodType()

Figure 4: Uniform Instantiation Notation

4 CONCLUSION
The UML currently employs different concepts and

notations to represent instantiation depending on
the levels at which the instantiation takes places.

4

This non-uniform modelling approach not only
complicates and distorts the notation and the
semantics of the UML, but also limits the potential
effectiveness of metamodelling.

In this paper we have described two fundamental
principles upon which a clean, multi-level model
engineering paradigm should be based:

• strict metamodelling and

• clabjects.

We then went on to suggest a way of enhancing the
well-established instantiation notation to provide a
uniform way of depicting the instantiation of a
model element, independently of the level at which
the instantiation takes place. A minor generalisation
of this form will allow the existing "built-in"
extension mechanisms (except constraints) to be
removed from the UML, with a consequent overall
simplification in its semantics and notation. Such a
simplification is likely to be of particular value in
connection with the expected shrinkage of the UML
kernel [3], and the increased reliance on
metamodelling-based tailoring mechanisms such as
profiling [4].

The suggested notational enhancements are not the
main point of the paper, however. The main
message of the paper is that future versions of the
UML must fully embrace the principle of multi-
level model engineering by providing a uniform,
level-independent set of modelling concepts and
notations. Only then will the true benefits of model
engineering become available to users of the UML.

5 REFERENCES
1. C. Kobryn (ed.), OMG Unified Modelling

Language Specification, Version 1.3, OMG
document ad/99-06-08 1999

2. C. Atkinson, Metamodelling for Distributed
Object Environments, First International
Enterprise Distributed Object Computing
Workshop (EDOC'97). Brisbane, Australia,
1997

3. C. Kobryn, UML 2001: A Standardization
Odyssey, Communications of the ACM
(42):10, p. 29–37, 1999.

4. P. Desfray (ed.), White Paper on the profile
mechanism, OMG Document ad/99-04-07,
1999

